Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ thức lượng trong tam giác vuông vào ΔEIF vuông tại E có EQ là đường cao ứng với cạnh huyền FI, ta được:
\(EQ^2=QF\cdot QI\)
\(\Leftrightarrow QF\cdot QI=2^2=4\left(cm\right)\)
\(\Leftrightarrow QF\cdot\left(5-QF\right)-4=0\)
\(\Leftrightarrow5QF-QF^2-4=0\)
\(\Leftrightarrow QF^2-5QF+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}QF=1\left(cm\right)\\QF=4\left(cm\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}QI=4\left(cm\right)\\QI=1\left(cm\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}EI^2=QI\cdot FI=4\cdot5=20\left(cm\right)\\EI^2=QI\cdot FI=1\cdot5=5\left(cm\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}EI=2\sqrt{5}\left(cm\right)\\EI=\sqrt{5}\left(cm\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}EF^2=FQ\cdot FI=1\cdot5=5\left(cm\right)\\EF^2=FQ\cdot FI=4\cdot5=20\left(cm\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}EF=\sqrt{5}\left(cm\right)\\EF=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
\(\Leftrightarrow EI+EF=3\sqrt{5}\left(cm\right)\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
Gọi độ dài cạnh góc vuông 1 là x
=>Độ dài cạnh góc vuông 2 là x+2
Theo đề, ta có: x^2+x^2+4x+4=5^2=25
=>2x^2+4x-21=0
=>x=(-2+căn 46)/2
=>Độ dài cạnh góc vuông 2 là (2+căn 46)/2
Độ dài đường cao là:
\(\dfrac{\left(-2+\sqrt{46}\right)\left(2+\sqrt{46}\right)}{2}:5=\dfrac{46-4}{2}:5=\dfrac{42}{10}=4,2\)
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày
A B C 4 9
Ta có : BC = BH +HC = 4 + 9 = 13 (cm)
Theo hệ thức lượng trong tam giác vuông ta có:
- AC2 = BC * HC
AC2 = 13 * 9 = 117
AC = \(3\sqrt{13}\)(cm)
- AB2 =BH * BC
AB2 = 13 * 4 = 52
AB = \(2\sqrt{13}\)(CM)
Cái kết quả á nó là bằng 0 á