Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(DE^2+DF^2=3^2+4^2=25\left(cm\right)\)
và \(EF^2=5^2=25\left(cm\right)\)
\(\Rightarrow DE^2+DF^2=EF^2\)
\(\Delta DEF\)có ba cạnh thỏa mãn định lý Py - ta - go nên \(\Delta DEF\) vuông
b) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=\frac{1}{2}EF\)
\(\Rightarrow DI=\frac{1}{2}.5=2,5\left(cm\right)\)
c) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=FI=EI\)
Lại có IK vuông góc DF
\(\Rightarrow\)IK là đường trung trực của đoạn thẳng DF
\(\Rightarrow IK=\frac{1}{2}DF=\frac{1}{2}.4=2\left(cm\right)\)
Giải: a) Ta có: DE2 + DF2 = 32 + 42 = 9 + 16 = 25
EF2 = 52 = 25
=> DE2 + DF2 = EF2 => DEF là t/giác vuông (theo định lí Pi - ta - go đảo)
b) Xét t/giác DEF có DI là đường trung tuyến
=> DI = EI = IF = 1/2EF = 1/2.5 = 2,5 (cm)
c) Ta có: DI = IF => t/giác DIF là t/giác cân
có IK là đường cao
=> IK đồng thời là đường trung tuyến
=> DK = KF = 1/2 DF = 1/2.4 = 2 (cm)
Áp dụng định lí Pi - ta - go vào t/giác IDK vuông tại K, ta có:
DI2 = IK2 + DK2
=> IK2 = DI2 - DK2 = 2,52 - 22 = 2,25
=> IK = 1,5 (cm)
Câu a) xét 2 tam giác IED và tam giác DEF
góc EID= góc EDFo=90 độ
góc DEF CHUNG
DO ĐÓ : TAM GIÁC IED ĐỒNG DẠNG VỚI TAM GIÁC DEF
CÂU B)
ÁP DỤNG ĐỊNH LÍ PYTAGO TRONG TAM GIÁC DEF CÓ
EF^2=DE^2+DF^2
=) EF^2= 3^2+4^2=25
=) EF= CĂN 25=5 CM
LẠI CÓ TAM GIÁC IED ĐỒNG DẠNG VỚI TAM GIÁc DEF(cm câu a)
=) ED/EF = ID/DF HAY 3/5 = ID/ 4
(=)ID= 3*4/5= 2,4 (CM
CÂU C)
TA CÓ : TAM GIÁC IED đồng dạng với tam giác DEF (CM CÂU A)
=) IE/DE = ED/EF
hay DE^2=IE*EF
xét tam giác DEI và tam giác FED ta có :
góc E chung
góc DIE = góc FDE (=90 độ)
=> tam giác DEI đồng dạng với tam giác FED (g.g )
=> DE/EF=EI/ED =>.DE2=EF.EI
a) xét ΔHED và ΔDEF có
\(\widehat{EHD}=\widehat{EDF}=\)90o
\(\widehat{E} chung\)
=> ΔHED ∼ ΔDEF (gg)
b) Xét ΔDEF có \(\widehat{D}=\)90o
=> DE2+DF2=EF2
=>62+82=EF2
=> EF=10 cm
SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10
=> DH =4,8 cm
c) Xét ΔDEH có \(\widehat{EHD}=90\)o
=> HD2.HE2=ED2
=>4.82+HE2=62
=> HE=3.6
ta lại có DI là phân giác
=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)
=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2
=> IH=EH-EI=3.6-2=1.6
a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có
\(\widehat{HED}\) chung
Do đó: ΔHED\(\sim\)ΔDEF(g-g)
a: Xét ΔDKF vuông tại K và ΔEDF vuông tại D có
góc F chung
=>ΔDKF đồng dạng với ΔEDF
b: \(DF=\sqrt{20^2-16^2}=12\left(cm\right)\)
DK=12*16/20=9,6cm
c: MK/MD=FK/FD
DI/EI=FD/FE
mà FK/FD=FD/FE
nên MK/MD=DI/EI