K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2021

\(\widehat{C}=90^0-\widehat{B}=35^034'\\ BC=\dfrac{AC}{\sin B}=\dfrac{12}{\sin54^026'}\approx14,75\left(cm\right)\)

17 tháng 10 2021

a: \(\widehat{B}=60^0\)

AB=8cm

\(AC=4\sqrt{3}\left(cm\right)\)

a: \(\widehat{B}=90^0-30^0=60^0\)

XétΔABC vuông tại A có 

\(\sin C=\dfrac{AB}{BC}\)

nên AB=5cm

=>\(AC=5\sqrt{3}\left(cm\right)\)

b: \(\widehat{C}=90^0-30^0=60^0\)

Xét ΔABC vuông tại A có 

\(\sin C=\dfrac{AB}{BC}\)

hay \(BC=16\sqrt{3}\left(cm\right)\)

=>\(AC=8\sqrt{3}\left(cm\right)\)

13 tháng 10 2021

 

AH
Akai Haruma
Giáo viên
25 tháng 5 2023

Lời giải:

Ta có: $\frac{3}{4}=\tan B=\frac{AC}{AB}$

$\Rightarrow AC=\frac{3}{4}AB=\frac{3}{4}.12=9$ (cm) 

$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+9^2}=15$ (cm) - theo định lý Pitago

$\cot C=\frac{AC}{AB}=\tan B=\frac{3}{4}$

$\Rightarrow \widehat{C}=53,13^0$

20 tháng 10 2017

mn giúp em làm ý e vs ạ,thanks mn nhiều ^^

góc B=90-40=50 độ

Xét ΔABC vuông tại A có

tan C=AB/AC

=>12/AC=tan 40

=>\(AC\simeq14,3\left(cm\right)\)

=>\(BC=\sqrt{14.3^2+12^2}\simeq18,67\left(cm\right)\)

Xét ΔABC có BD là phân giác

nên AD/AB=CD/BC

=>AD/12=CD/18,67

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{12}=\dfrac{CD}{18.67}=\dfrac{AD+CD}{12+18.67}=\dfrac{14.3}{30.67}\simeq0,47\)

=>\(AD\simeq5,64\left(cm\right);CD\simeq8,76\left(cm\right)\)

24 tháng 10 2021

a) Xét tam giác ABC vuông tại A có:

\(\widehat{B}+\widehat{C}=90^0\Rightarrow\widehat{C}=90^0-\widehat{B}=90^0-60^0=30^0\)

b) Áp dụng tslg :

\(cosB=\dfrac{AB}{BC}\Rightarrow AB=10.cos60^0=5\left(cm\right)\)