Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: HB=HC=căn 10^2-8^2=6cm
b: Xét ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAD can tại B
Nối \(AE\), tam giác \(EAC\) có chiều cao bằng độ dài đoạn \(AD=10cm\).
Diện tích tam giác \(EAC\) bằng:
\(\frac{50\times10}{2}=250\left(cm^2\right)\)
Diện tích tam giác \(ABC\) bằng:
\(\frac{50\times40}{2}=1000\left(cm^2\right)\)
Diện tích tam giác \(BAE\) ( bằng diện tích tam giác \(ABC\) trừ đi diện tích tam giác \(EAC\) ):
\(1000-250=750\left(cm^2\right)\)
Chiều cao \(ED\) của tam giác \(BAE\) bằng:
\(\frac{750\times2}{40}=37,5\left(cm\right)\)
Độ dài cạnh \(BC\) bằng:
\(50-10=40\left(cm\right)\)
Vì \(DE\) song song với \(AC\) nên \(DE\) vuông góc với \(BD\). Vậy tam giác \(BDE\) là tam giác vuông tại \(D\) và có diện tích bằng:
\(\frac{40\times37,5}{2}=750\left(cm^2\right)\)
Đáp số: \(750cm^2\)
\(S\) \(ABC:\frac{40\times50}{2}=1000\left(cm^2\right)\)
\(S\) \(AEC:\frac{50\times10}{2}=250\left(cm^2\right)\)
\(S\) \(ABE:1000-250=750\left(cm^2\right)\)
\(DE:\frac{750\times2}{40}=37,5\left(cm\right)\)
\(S\) \(BDE:\frac{37,5\times30}{2}=562,5\left(cm^2\right)\)
B1:
Diện tích tam giác ABC là:
54 × 60 : 2 = 1620 ( m2 )
Nối A với N ta được tam giác ANC có chiều cao là 10cm và đáy AC là 54cm
Diện tích tam giác ANC là :
10 × 54 : 2 = 270 ( m2 )
Diện tích tam giác ABN là:
1620 - 270 = 1350 ( m2 )
Độ dài đoạn MN là:
1350 × 2 : 60 = 45 ( m)
Vậy đoạn MN dài 45m
Bạn vẽ hình xong rồi thì đay là lời giải:
+ Diện tích ADE=1/2 dien h ADE (vì có chung chiều cao hạ từ E xuông đáy AD và AD= 1/2 AC)
Suy ra : dien h ABC= 2 * EDC
EB = 2* ED (1)
+Diện tích ADE= 1/2 diện tích ADE (vì có chung chiều cao hạ từ đỉnh A xông đáy BD và ED=1/2 BE) (2)
Từ (1) va (2) suy ra :
Diện tích ABE=diện tÍCh AEC mà 2 tam giác này có chung đáy AE nên chiều cao tam giác ABE hạ từ đỉnh B xuống đáy AE bằng chiều cao hạ từ đỉnh C xuông đáy AE
Ta thấy 2 chiều cao này chính là chiều cao của BEM và CEM , mà 2 tam giác này nên diện h BEM=CEM mà chúng có diện tích bằng nhau, chung đáy EM Nên BM=MC
BM= 8:2=4
Gọi AH là cc tương ứng với BC
Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\)