K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...  loading...  loading...  

NV
21 tháng 4 2023

a,

Do MD là trung trực của BC \(\Rightarrow DB=DC\)

\(\Rightarrow\Delta DBC\) cân tại D

\(\Rightarrow\widehat{DBC}=\widehat{DCB}\)

Lại có \(\widehat{BDE}=\widehat{DCB}+\widehat{DBC}=2\widehat{DCB}=2\widehat{ACB}\) (góc ngoài của tam giác) (1)

Do \(\left\{{}\begin{matrix}AB\perp DE\left(gt\right)\\AE=AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AB\) là trung trực DE

\(\Rightarrow BE=BD\Rightarrow\Delta BDE\) cân tại B \(\Rightarrow\widehat{BEC}=\widehat{BDE}\) (2)

(1);(2) \(\Rightarrow\widehat{BEC}=2\widehat{ACB}\)

b.

Xét hai tam giác BAC và DMC có:

\(\left\{{}\begin{matrix}\widehat{C}\text{ chung}\\\widehat{BAC}=\widehat{DMC}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta BAC\sim\Delta DMC\left(g.g\right)\)

\(\Rightarrow\dfrac{AC}{MC}=\dfrac{BC}{CD}\Rightarrow CA.CD=BC.MC=BC.\dfrac{1}{2}BC=\dfrac{BC^2}{2}\)

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

20 tháng 12 2014

2/. Tam giác AKC có

          CH là đường cao

         AE là đường cao

         Ch cắt AE tại E

Nên E là trực tâm của tam giác AKC

20 tháng 12 2014

3/. Ta có góc HAC + góc HCA = 90 độ

     Ta có góc IEC + góc ECI = 90 độ => góc ICE + góc HCA = 90 độ

 => góc HAC = góc IEC                                                                                  (1)

Ta có IH = AH (tam giác AIK vuông tại I, HI là trung tuyến)

         => tam giác AHI cân tại H => góc HAI = góc HIA => góc HAC = góc HIA  (2)

Ta có IM = MẸ (tam giác EIC vuông tại I, IM là trung tuyến

         => tam giác EMI cân tại M => góc IEM = góc MIE => góc IEC = góc MIE (3)

Từ (1)(2)(3) ta suy ra góc HIA = góc MIE    (4)

Ta có góc HIA + góc HIE = 90 độ(5)

         góc HIE + góc EIM = 90 độ(6)

Từ (4)(5)(6) ta suy ra góc HIE + góc EIM = 90 độ => HI vuông góc với IM

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

b: Xét tứ giác AMBP có

D là trung điểm chung của AB và MP

MA=MB

Do đó: AMBP là hình thoi

=>ABlà phân giác của góc MAP(1)

c: Xét tứ giác AMCQ có

E là trung điểm chung của AC và MQ

MA=MC

Do đó: AMCQ là hình thoi

=>AC là phân giác của góc MAQ(2)

Từ (1), (2) suy ra góc PAQ=2*90=180 độ

=>P,A,Q thẳng hàng

mà AP=AQ

nên A là trung điểm của PQ

Bài 1: 

a: Ta có: D và E đối xứng nhau qua AB

nên AD=AE
=>ΔADE cân tại A

mà AB là đường cao

nên AB là phân giác của góc EAD(1)

Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)

Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ

AE=AD

AF=AD

Do đó: AE=AF

b: Xét ΔADM và ΔAEM có

AD=AE
góc DAM=góc EAM

AM chung

DO đó: ΔADM=ΔAEM

SUy ra: góc ADM=góc AEM(3)

Xét ΔADN và ΔAFN có

AD=AF

góc DAN=góc FAN

AN chung

Do đó; ΔADN=ΔAFN

Suy ra: góc ADN=góc AFN(4)

Từ (3) và (4) suy ra góc ADM=góc ADN

hay DA là phân giác của góc MDN