Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>AH=EF
b: Ta có: ΔABH vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2=6^2-3,6^2=23,04\)
=>\(HA=\sqrt{23,04}=4,8\left(cm\right)\)
Xét ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\)
=>\(AE\cdot6=4,8^2=23,04\)
=>\(AE=\dfrac{23.04}{6}=3,84\left(cm\right)\)
AEHF là hình chữ nhật
=>AE=HF
mà AE=3,84cm
nên HF=3,84cm
a: Xét tứ giác AIHK có
\(\widehat{KAI}=\widehat{AKH}=\widehat{AIH}=90^0\)
Do đó: AIHK là hình chữ nhật
b: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH^2=BH\cdot CH\)
A) Xét tg AIHK có I = 90 độ( I là hình chiếu của H)
A=90 độ( tg ABC vg tại A)
K=90 độ( K là hình chiếu của H)
=> tg AIHK là hcn (dh1)
B) Xét tg ABC và tg ABH có A=H=90 độ
B chung
=> tg ABC~tg ABH(g.g)
Xét tg ABC và tg HAC có A=H=90 độ
C chung
=> tg ABC ~ tg HAC ( g.g)
=> tg ABH~ Tg HAC(~ tg ABC)
=> AB/AH=AH/CH<=>AH2=BH.CH
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
Lời giải:
a/ Tứ giác $AEHF$ có 3 góc vuông: $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên là hình chữ nhật.
$\Rightarrow AH=EF$
b/ $HF=AE$ (do $AEHF$ là hcn)
Xét tam giác $AEH$ và $AHB$ có:
$\widehat{A}$ chung
$\widehat{AEH}=\widehat{AHB}=90^0$
$\Rightarrow \triangle AEH\sim \triangle AHB$ (g.g)
$\Rightarrow \frac{AE}{AH}=\frac{AH}{AB}$
$\Rightarrow AE=\frac{AH^2}{AB}=\frac{AB^2-BH^2}{AB}=\frac{6^2-3,6^2}{6}=3,84$ (cm)
Hình vẽ: