\(\left(\widehat{A}=90^o\right)\),kẻ \(AH\per...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

Hãy tick câu trả lời của mk nếu bạn ko mún tick

nếu mún tick thì cứ tick

leu

8 tháng 1 2018

Bn biết lm k giúp mình với!!!!!!!!!bucminh

8 tháng 1 2018

tam giác ABH vuông tại H ( AH vuong goc BC) \(\Rightarrow\) \(AB^2=BH^2+AH^2\left(pytago\right)\)

tg AHC vuông tại H \(\Rightarrow AC^2=AH^2+HC^2\) 

CÓ \(AB^2+CH^2=BH^2+AH^2+CH^2\) (1)

VÀ \(AC^2+BH^2=AH^2+HC^2+BH^2\) (2)

TỪ (1),(2) \(\Rightarrow\) \(AB^2+CH^2=AC^2+BH^2\)

19 tháng 4 2019

BTS là cục cứt chó j , nó đéo xứng làm cục cứt của the coconut tao

con kia là đồ giả mạo 

Mà ông Duy có j hay đâu mà bọn m giả lắm thế

a) Chứng minh ΔBHC=ΔCKB

Xét ΔBHC vuông tại H và ΔCKB vuông tại K có

BC là cạnh chung

\(\widehat{HCB}=\widehat{KBC}\)(\(\widehat{ACB}=\widehat{ABC}\), H∈AC, K∈AB)

Do đó: ΔBHC=ΔCKB(cạnh huyền-góc nhọn)

b)

*Chứng minh IB=IC

Ta có: ΔBHC=ΔCKB(cmt)

\(\widehat{HBC}=\widehat{KCB}\)(hai góc tương ứng)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(định lí đảo của tam giác cân)

⇒IB=IC(đpcm)

*Chứng minh \(\widehat{IBK}=\widehat{ICH}\)

Ta có: \(\widehat{ABH}+\widehat{HBC}=\widehat{ABC}\)(tia BH nằm giữa hai tia BA,BC)

\(\widehat{ACK}+\widehat{BCK}=\widehat{ACB}\)(tia CK nằm giữa hai tia CA,CB)

\(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

\(\widehat{HBC}=\widehat{KCB}\)(cmt)

nên \(\widehat{ABH}=\widehat{ACK}\)

hay \(\widehat{IBK}=\widehat{ICH}\)(đpcm)

c) Chứng minh KH//BC

Ta có: ΔBKC=ΔBHC(cmt)

⇒KB=HC(hai cạnh tương ứng)

Ta có: AK+KB=AB(A,K,B thẳng hàng)

AH+HC=AC(do A,H,C thẳng hàng)

mà AB=AC(ΔABC cân tại A)

và KB=HC(cmt)

nên AK=AH

Xét ΔAKH có AK=AH(cmt)

nên ΔAKH cân tại A(định nghĩa tam giác cân)

\(\widehat{AKH}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAKH cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)

\(\widehat{AKH}\)\(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên KH//BC(dấu hiệu nhận biết hai đường thẳng song song)

12 tháng 3 2020


A B C H K I a.Do △ABC cân ⇒∠ABC=∠ACB

Xét △BHC= △CKB (cạnh huyền-góc nhọn)

⇒∠IBC=∠ICB (2 góc tương ứng)

b. Do ∠IBC =∠ICB (câu a)

⇒△IBC cân ⇒ IB=IC

Xét △IBK=△ICH (cạnh huyền-góc nhọn)

⇒∠IBK=∠ICH (2 góc tương ứng)

c. Do △BHC=△CKB (câu a)

⇒ BH=CK (2 cạnh tương ứng)

⇒HC=KB ( 2 cạnh tương ứng)

Xét △BHK=△CKH(c.c.c)

⇒ ∠BHK=∠CKH (2 góc tương ứng)

Xét △IKH có: ∠2IHK=1800 -∠ KIH

Xét △IBC có : ∠2IBC=1800 -∠ ICB -∠BIC

Mà ∠BIC=∠KIH (2góc đối đỉnh)

⇒∠2IBC=1800-∠KIH

⇒∠IBC=∠IHK

Mà ∠IBC và ∠IHK là 2 góc so le trong

⇒KH // BC

Còn câu d thì hình như bị thiếu dữ kiện nên mik chưa làm

Chúc bn hok tốt

29 tháng 5 2018

a )

Xét : \(\Delta ABHva\Delta ADH,co:\)

\(\widehat{H_1}=\widehat{H_2}=90^o\left(gt\right)\)

BH = HD ( gt )

AH là cạnh chung 

Do do : \(\Delta ABH=\Delta ADH\left(c-g-c\right)\)

b ) 

Ta có : \(\Delta ABD\) là tam giác đều ( cmt ) 

= > \(\widehat{BAD}=60^o\) ( trong tam giác đều mỗi góc bằng 60o ) 

Ta có : \(\widehat{CAD}=\widehat{BAC}-\widehat{BAD}=90^o-60^o=30^o\) ( tia AD nằm giữa 2 tia AB và AC )

Hay  :  \(\widehat{EAD}=30^o\left(E\in AC\right)\)  

Ta có :\(\widehat{ADH}=60^o\) ( \(\Delta ABD\) là tam giác đều ) 

Ta có : \(\widehat{HAD}=\widehat{H_2}-\widehat{ADH}=90^o-60^o=30^o\)

Ta có : \(AH\perp BC\) và  \(ED\perp BC\)

= > \(AH//ED\) ( vì cùng vuông góc với BC ) 

=> \(\widehat{HAD}=\widehat{ADE}=30^o\) ( 2 góc so le trong của AH//ED ) 

=> \(\Delta AED\) là tam giác cân , và cân tại E ( vì có 2 góc ở đáy bằng nhau ( \(\widehat{HAD}=\widehat{ADE}=30^o\)) ) 

c ) mình không biết chứng minh AH = HF = FC  nha , mình chỉ chứng minh \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\) thôi nha :

Ta có : \(\Delta ABC\) vuông tại A  và AH là đường cao  ( gt ) 

= > \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)  ( hệ thức lượng trong tam giác vuông ) 

 Hình mình vẽ hơi xấu , thông cảm nha 

HỌC TỐT !!! 

  

29 tháng 5 2018

a) Tam giác ABC có AH là đường cao đồng thời là trung tuyến ( BH=HD)

\(\rightarrow\) tam giác ABD cân tại A

Mà  \(\widehat{B}\) = 60 độ \(\rightarrow\) tam giác ABD đều

b) Tam giác ABD đều nên \(\widehat{ADB}\) = \(\widehat{BAD}\) = 60 độ

\(\rightarrow\) \(\widehat{ADE}\) = \(\widehat{HDE}\) - \(\widehat{ADB}\) = 30 độ

Tương tự có \(\widehat{DAE}\) = 30độ

\(\Rightarrow\) Tam giác ADE cân tại E

c1) Xét tam giác AHC và tam giác CFA

           \(\widehat{ACF}\) = \(\widehat{CAF}\) = 30độ

           AC chung

\(\rightarrow\) tam giác bằng nhau ( cạnh huyền - góc nhọn)

\(\rightarrow\) AH = FC

Ta có \(\widehat{BAD}\) = 60 độ và \(\widehat{BAH}\) = 30 độ

\(\rightarrow \) \(\widehat{HAD}\) = 30 độ hay \(\widehat{HAF}\) = 30 độ

 ____Phần còn lại cm tam giác HAF cân là ra 

Mk bận chút việc nên ms làm đến đây thui nka ~

12 tháng 9 2017

Câu 1

a.

Xét \(\Delta ABC\) có :

\(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^o\) ( định lý tổng 3 góc của 1 \(\Delta\) )

\(\Rightarrow\widehat{BCA}=40^o\) (1)

Ta có Ax là tia đối của AB

suy ra \(\widehat{BAC}+\widehat{CAx}=180^o\)

\(\widehat{CAx}=80^o\)

lại có Ay là tia phân giác \(\widehat{CAx}\)

\(\Rightarrow\widehat{xAy}=\widehat{yAc}=\dfrac{\widehat{CAx}}{2}=\dfrac{80^o}{2}=40^o\) (2)

Từ (1)(2) suy ra \(\widehat{yAc}=\widehat{ACB}=40^o\)

mà chúng ở vị trí so le trong

\(\Rightarrow\) Ay//BC

Bài 2

Rảnh làm sau , đến giờ học rồi .

a) Hai tam giác vuông ABH và ACK có:

AB = AC(gt)

Góc A chung.

nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)

suy ra AH = AK.

b) Hai tam giác vuông AIK và AIH có:

AK = AH(cmt)

AI cạnh chung

Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)

Suy ra ˆIAKIAK^=ˆIAHIAH^

Vậy AI là tia phân giác của góc A.

20 tháng 4 2017

a) Hai tam giác vuông ABH và ACH có:

Tam giác ABC cân tại A ⇒ AB = AC

AH cạnh chung.

Nên ∆ABH = ∆ACH(Cạnh huyền – cạnh góc vuông)

Suy ra HB = HC

b)∆ABH = ∆ACH (Câu a)

Suy ra ∠BAH = ∠CAH (Hai góc tương ứng)