Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Py Ta go cho tam giác ABC vuông tại A ta có:
BC2 = BA2 + CA2
= 62 + 82 = 100
Vậy BC = \(\sqrt{100}=10cm\)
b) Đặt Trung trực của BC cắt BC tại I
Xét tam giác BDI và tam giác CDI có:
ID chung
IB = IC
Góc BID = góc CID
Vậy tam giác BDI = tam giác CDI (c - g - c)
=> Góc DBC = DCB (2 góc tương ứng)
c. ta có tam giác ECD cân tại D => góc DEC= góc DCE = (180 - góc ADC): 2 (1)
ta lại có góc BDI + góc IDC + CDE = 180 độ
=> góc BDI + góc IDC = 180- góc CDE
mà theo câu b ta có Góc BDI= góc ICD
nên ta có góc BDI= góc IDC= (180- góc CDE):2 (2)
từ (1) và (2) => góc BDI = góc DEC mà 2 góc này ở vị trí đồng vị nên EC// DI
mà DI vuong góc với BC => EC vuông góc với BC nên tgiac BCE vuông
xét tg ABC vuông tại A
Áp dụng định lí Pitago ta có,
BC2=AC2+AB2, thay số
BC2= 82+62
BC2= 64+36
BC2= 100
BC2=102 \(\Rightarrow\)BC=10
b) Do DE vừa là đường cao vừa là đường trung tuyến nên tam giác DBC cân suy ra góc DBC bằng góc DCB
\(a,\)(Sửa đề: \(\Delta ABD=\Delta EBD\))
Vì \(\begin{cases} AB=BE\\ \widehat{ABD}=\widehat{EBD}\\ BD\text{ chung} \end{cases}\) nên \(\Delta ABD=\Delta EBD(c.g.c)\)
\(\Rightarrow \widehat{BAD}=\widehat{BED}=90^0\\ \Rightarrow DE\bot BC\)
\(b,\Delta ABD=\Delta EBD(cmt)\\ \Rightarrow AD=DE\Rightarrow D\in\text{trung trực }AE\\ AB=BE\Rightarrow B\in \text{trung trực }AE\\ \Rightarrow BD\text{ là trung trực }AE\)
\(c,\begin{cases} \widehat{MAD}=\widehat{CED}=90^0\\ AD=DE\\ AM=EC \end{cases}\\\Rightarrow \Delta ADM=\Delta EDC(c.g.c)\\ \Rightarrow MC=MD\)
\(d,\Delta ADM=\Delta EDC(cmt)\\ \Rightarrow \widehat{ADM}=\widehat{EDC}\)
Mà 2 góc này ở vị trí đối đỉnh và \(A,D,C\) thẳng hàng nên \(M,D,E\) thẳng hàng