Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAB có
N là trung điểm của AB
NP//AB
=>P là trung điểm của AC
Xét ΔCAB có
N là trung điểm của BC
NM//AC
=>M là trung điểm của AB
b: Xét tứ giác ANCE có
P là trung điểm chung của AC và NE
AC vuông góc NE
=>ANCE là hình thoi
a: Xét ΔBAC có BN/BA=BM/BC
nên NM//AC và NM=AC/2
=>NM//AP và NM=AP
=>ANMP là hình bình hành
mà góc NAP=90 độ
nên ANMP là hình chữ nhật
b: Xét tứ giác CMNP có
NM//CP
NM=CP
Do đó: CMNP là hình bình hành
=>CN cắt MP tại trung điểm của mỗi đường
=>E là trung điểm của NC
sao mk lại
ghét toán hình
quáGame Play
hihi
chúc bn học gioi!
nhaE@@@@
a: Xét tứ giác ANMP có
\(\widehat{ANM}=\widehat{APM}=\widehat{NAP}=90^0\)
=>ANMP là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MN//AC(cùng vuông góc với AB)
Do đó: N là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MP//AB(cùng vuông góc với AC)
Do đó: P là trung điểm của AC
=>\(AP=PC=\dfrac{AC}{2}\)
mà MN=AP(ANMP là hình chữ nhật)
nên MN=AP=PC
Xét tứ giác CMNP có
CP//MN
CP=MN
Do đó: CMNP là hình bình hành
=>CN cắt MP tại trung điểm của mỗi đường
mà E là trung điểm của MP
nên E là trung điểm của CN
c: Xét ΔPMA và ΔPGC có
\(\widehat{PCG}=\widehat{PAM}\)(hai góc so le trong, CG//AM)
PA=PC
\(\widehat{CPG}=\widehat{APM}\)(hai góc đối đỉnh)
Do đó: ΔPMA=ΔPGC
=>PG=PM
=>P là trung điểm của MG
Xét tứ giác AMCG có
P là trung điểm chung của AC và MG
=>AMCG là hình bình hành
Hình bình hành AMCG có AC\(\perp\)MG
nên AMCG là hình thoi
a) \(\Delta ABC\) có MA = MB; NA = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)MN // BC
\(\Rightarrow\)Tứ giác BMNC là hình thang
b) \(\Delta ABC\)có NA = NC; QB = QC
\(\Rightarrow\)NQ // AB; NQ = 1/2 AB
mà MA = 1/2 AB
\(\Rightarrow\)NQ = MA
Tứ giác AMQN có NQ // AM; NQ = AM
\(\Rightarrow\)AMQN là hình bình hành