Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

diện tích tam giác ABC bằng tổng diện tích ba hình tam giác : ABM ; AMN ; ANC.
A B H M N C
Diện tích tam giác ABM là :
( 25 x 12 ) : 2 = 150 ( cm2 )
Vì ba tam giác ABM , AMN và ANC có cung chiều cao kẻ từ A nên :
Diện tích tam giác AMN bằng \(\frac{3}{2}\) diện tích tam giác ABM và bằng :
150 x \(\frac{3}{2}\) = 225 ( cm2 )
Diện tích tam giác ANC bằng \(\frac{1}{2}\) diện tích tam giác AMN và bằng :
225 : 2 = 112,5 ( cm2 )
Diện tích tam giác ABC là :
150 + 225 + 112,5 = 487,5 ( cm2 )
đáp số : 487,5 cm2

A B C I K 1 2 1 2 x y
a) Ta có :
Góc B1 + Góc B2 = 180o
\(\Rightarrow\frac{1}{2}\)Góc B1 + \(\frac{1}{2}\)Góc B2 = 90o
\(\Rightarrow\)Góc ABx + Góc ABI = 90o
\(\Rightarrow\)Góc IBx = 90o
Mà góc IBx + góc IBK = 180o ( kề bù )
\(\Rightarrow\)Góc IBK = 90o ; nên \(\Delta IBK\) vuông tại B.
Chứng minh tương tự, ta cũng có góc ICK vuông, nên \(\Delta ICK\)vuông tại C.
b) Ta có :
Góc B + Góc C = \(180^o-\)Góc A
\(\Rightarrow2.\)Góc C + Góc C = 180o - \(\alpha\)
Góc C = \(\frac{180^o-\alpha}{3}=60^o-\frac{\alpha}{3}\)
Góc B = \(\left(60^o-\frac{\alpha}{3}\right).2=120^o-\frac{2\alpha}{3}\)
A B C
gỈA THIẾT | CHO TAM GIÁC VÔNG abc
kết luận | ?