Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lý Py-ta-go vào \(\Delta\)ABC ta có :
BC\(^2\)= AB\(^2\)+AC\(^2\)
=> AC\(^2\) = 25 - 9
=> AC = 4 (cm)
SinB = AC/BC = \(\frac{4}{5}\)
CosB = AB/BC = \(\frac{3}{5}\)
TanB = AC/AB =\(\frac{4}{3}\)
CotB =AB/AC = \(\frac{3}{4}\)
b) Áp dụng định lý Py-ta-go vào \(\Delta\)ABC có :
BC2 = AB2 +AC2
=> BC2= 169 +144
=> BC =\(\sqrt{313}\)
SinB = AC/BC =\(\frac{12}{\sqrt{313}}\)
CosB = AB/BC = \(\frac{13}{\sqrt{313}}\)
TanB = AC/AB =\(\frac{12}{13}\)
CotB = AB/AC = \(\frac{13}{12}\)
a: AC=căn 5^2+12^2=13cm
sin C=AB/AC=12/13
cos C=5/13
tan C=12/5
cot C=1:12/5=5/12
b: AC=căn 10^2+3^2=căn 109(cm)
sin C=AB/AC=3/căn 109
cos C=BC/AC=10/căn 109
tan C=AB/BC=3/10
cot C=10/3
c: BC=căn 5^2-3^2=4cm
sin C=AB/AC=3/5
cos C=4/5
tan C=3/4
cot C=4/3
a,Sin B=\(\frac{AC}{BC}=\)\(\frac{4}{5}=0.8\)
Cos B=\(\frac{AB}{BC}=\frac{3}{5}=0,6\)
Tan B =\(\frac{AC}{AB}=\frac{4}{3}\)
Cot B=\(\frac{AB}{AC}=\frac{3}{4}=0,75\)
b,Vì sin B = 0,8 => B=53o
=> C=37o(áp dụng hệ quả định lí tổng r tính)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Cot B = \(\frac{AB}{AC}\Rightarrow AB=cotB.AC\)
\(\Rightarrow AB=2,4.5=12\left(cm\right)\)
\(BC^2=AB^2=12^2+5^2=169\)
\(\Rightarrow BC=\sqrt{169}=13cm\)
b) sin C \(\frac{AB}{BC}=\frac{12}{13}\)
cos C = \(\frac{AC}{BC}=\frac{5}{13}\)
tan C = \(\frac{AB}{AC}=\frac{12}{5}\)
cot C = \(\frac{AC}{AB}=\frac{5}{12}\)
Chúc bạn học tốt !!!
Lời giải:
a. $AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4$ (cm)
$\cos B=\frac{AB}{BC}=\frac{3}{5}$
$\sin B = \frac{AC}{BC}=\frac{4}{5}$
$\tan B = \frac{AC}{AB}=\frac{4}{3}$
$\cot B = \frac{AB}{AC}=\frac{3}{4}$
b.
$BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=13$ (cm)
$\sin C = \frac{AB}{BC}=\frac{5}{13}$
$\cos C=\frac{AC}{BC}=\frac{12}{13}$
$\tan C=\frac{AB}{AC}=\frac{5}{12}$
$\cot C=\frac{AC}{AB}=\frac{12}{5}$