\(\frac{AB}{AC}=\frac{5}{6}\) đường cao AH=30cm
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2020

b) CM: \(\Delta ABH~\Delta CAH\Rightarrow\frac{AB}{AC}=\frac{AH}{CH}\)

\(\Rightarrow\frac{5}{6}=\frac{30}{CH}\Rightarrow CH=36cm\)

từ \(\Delta ABH~\Delta CAH\Rightarrow\frac{AH}{HC}=\frac{BH}{AH}\Rightarrow BH.HC=AH^2\)

\(\Rightarrow BH=\frac{AH^2}{CH}=\frac{30^2}{36}=25cm\)

25 tháng 10 2017

mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày 

A B C 4 9

Ta có : BC = BH +HC = 4 + 9 = 13 (cm)

Theo hệ thức lượng trong tam giác vuông ta có:

- AC2 = BC * HC 

AC2 = 13 * 9 = 117 

AC = \(3\sqrt{13}\)(cm)

- AB2 =BH * BC 

AB2 = 13 * 4 = 52 

AB = \(2\sqrt{13}\)(CM)

25 tháng 10 2017

trong sbt có giải ý. dựa vào mà lm

9 tháng 9 2018

Bài 1 

a) \(BC=125\Rightarrow BC^2=15625\)

\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)

\(\frac{AB^2}{9}=625\Rightarrow AB=75\)

\(\frac{AC^2}{16}=625\Rightarrow AC=100\)

Áp dụng hệ thức lượng trong tam giác vuông ta có 

\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)

\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)

b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông

Bài 2

Hình bạn tự vẽ

Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)

\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)

Bài 3 Đề bài này không đủ dữ kiện tính S của ABC

12 tháng 9 2018

Cám ơn cậu nhaaaaa

1 tháng 8 2017

ban tu ve hinh nha

ta co \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}=\frac{AB+AC}{3+4}=\frac{21}{7}=3\)

 \(\Rightarrow AB=9,AC=12\)

ap dung dl pitago vao tam giac ABC vuong  tai A

\(AB^2+AC^2=BC^2\Rightarrow BC=15\)

B. ap dung he thuc luong trong tam gia vuong ABC co 

\(AH\cdot BC=AC\cdot AB\Rightarrow AH=\frac{12\cdot9}{15}=7,2\) 

\(AB^2=BH\cdot CB\Rightarrow BH=\frac{9^2}{15}=5.4\)\(\Rightarrow CH=BC-BH=15-5,4=9.6\)

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)

29 tháng 7 2016

Ta có: góc BAH + HAC = 900

           góc ACH + HAC = 900

=> góc BAH = góc ACH

Xét tam giác AHB và tam giác CAB ta có:

    góc AHB = góc CAB (=900)

    góc BAH = góc BCA (chứng minh trên)

=> tam giác AHB đồng dạng với tam giác CAB (gg) (1)

\(\Rightarrow\frac{AH}{AC}=\frac{HB}{AB}\Rightarrow HB=\frac{AH.AB}{AC}=AH.\frac{AB}{AC}=30.\frac{5}{6}=25cm\)

\(AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{30^2}{25}=36cm\) 

                                                     Vậy BH = 25cm. CH = 36cm

29 tháng 7 2016

ta có thể đơn giản xét tam giác BAH ~ tam giác ACH

=>AH/CH= BH/AH= AB/AC

=> 30/CH= BH/30= 5/6

=> CH= 30.6:5= 36

=> BH= 5.30:6= 25