K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

Chọn A

Sửa đề: ΔABC\(\sim\)ΔA'B'C' theo tỉ số đồng dạng \(k_1=\dfrac{2}{3}\)

Vì ΔABC\(\sim\)ΔA'B'C' theo tỉ số đồng dạng \(k_1=\dfrac{2}{3}\)

mà ΔA'B'C' \(\sim\)ΔA''B''C'' theo tỉ số đồng dạng \(k_2=\dfrac{3}{4}\)

nên ΔABC\(\sim\)ΔA''B''C'' theo tỉ số đồng dạng \(k_1\cdot k_2=\dfrac{2}{3}\cdot\dfrac{3}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)

hay ΔA"B"C"\(\sim\)ΔABC theo tỉ số đồng dạng k=2

ΔA1B1C1 đồng dạng với ΔABC theo tỉ số đồng dạng là 3/14

=>A1/AB=3/14

=>AB=14*A1/3

ΔA2B2C2 đồng dạng với ΔABC theo tỉ số đồng dạng là 5/7

=>A2B2/AB=5/7

=>AB=7*A2B2/5

=>14/3*A1B1=7/5*A2B2

=>A1B1/A2B2=7/5:14/3=7/5*3/14=21/70=3/10

=>ΔA1B1C1 đồng dạng với ΔA2B2C2 theo tỉ số là 3/10

a: ΔABC đồng dạng với ΔA1B1C1

=>AB/A1B1=2/3=AC/A1C1 và góc A=góc A1

=>A1B1=3*AB/2; AC=3/2*A1C1

ΔA1B1C1 đồng dạng với ΔA2B2C2

=>A1B1/A2B2=3/4=A1C1/A2C2 và góc A1=góc A2

=>A1B1=3/4*A2B2; A1C1=3/4*A2C2

=>3/4*A2B2=3/2*AB và 3/4*A2C2=3/2*AC

=>A2B2/AB=3/2:3/4=2 và A2C2/AC=3/2:3/4=2

=>A2B2/AB=A2C2/AC(1)

góc A=góc A1

góc A1=góc A2

=>góc A=góc A2(2)

Từ (1), (2) suy ra ΔA2B2C2 đồng dạng với ΔABC

b: k=A2B2/AB=2

9 tháng 4 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Cách dựng:

- Trên cạnh AB dựng điểm B' sao cho = 2 cm

- Trên cạnh AC dựng điểm C' sao cho AC' = 3cm

- Nối B'C'

Khi đó AB'C' là tam giác cần dựng

* Chứng minh:

Theo cách dựng, ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Lại có:  ∠ A chung

Vậy △ AB'C' đồng dạng  △ ABC (c.g.c)

ΔABC~ΔKHG

=>\(\dfrac{AB}{KH}=\dfrac{2}{3}\)

=>\(KH=AB\cdot\dfrac{3}{2}\)

ΔKHG~ΔMNP

=>\(\dfrac{KH}{MN}=\dfrac{1}{3}\)

=>\(\dfrac{AB}{MN}\cdot\dfrac{3}{2}=\dfrac{1}{3}\)

=>\(\dfrac{AB}{MN}=\dfrac{1}{3}:\dfrac{3}{2}=\dfrac{2}{9}\)

=>ΔABC đồng dạng với ΔMNP theo tỉ số \(\dfrac{2}{9}\)