Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔAOM và ΔBOM có
OA=OB
OM chung
AM=BM
Do đó: ΔOAM=ΔOBM
2: Xét ΔMNA và ΔMOB có
MN=MO
\(\widehat{NMA}=\widehat{OMB}\)(hai góc đối đỉnh)
MA=MB
Do đó: ΔMNA=ΔMOB
3: Ta có: ΔMNA=ΔMOB
=>NA=OB
Ta có: ΔMNA=ΔMOB
=>\(\widehat{MNA}=\widehat{MOB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AN//OB
Ta có: OB=AN
\(OK=KB=\dfrac{OB}{2}\)(K là trung điểm của OB)
\(AH=HN=\dfrac{AN}{2}\)(H là trung điểm của AN)
Do đó: OK=KB=AH=HN
Xét tứ giác OKNH có
OK//NH
OK=NH
Do đó: OKNH là hình bình hành
=>ON cắt KH tại trung điểm của mỗi đường
mà M là trung điểm của ON
nên M là trung điểm của KH
=>K,M,H thẳng hàng
a: Xét ΔOMA và ΔOMB có
OM chung
MA=MB
OA=OB
Do đó: ΔOMA=ΔOMB
b: Xét ΔMAN và ΔMBO có
MA=MB
\(\widehat{AMN}=\widehat{BMO}\)(hai góc đối đỉnh)
MN=MO
Do đó: ΔMAN=ΔMBO
=>\(\widehat{MAN}=\widehat{MBO}\)
c: Sửa đề:chứng minh K,M,H thẳng hàng
Ta có: \(\widehat{MAN}=\widehat{MBO}\)
mà hai góc này là hai góc ở vị trí so le trong
nên OB//AN
Ta có: ΔMBO=ΔMAN
=>BO=AN(1)
Ta có: K là trung điểm của OB
=>\(OK=KB=\dfrac{OB}{2}\left(2\right)\)
Ta có:H là trung điểm của AN
=>\(HA=HN=\dfrac{AN}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra OK=KB=HA=HN
Xét tứ giác OKNH có
OK//NH
OK=NH
Do đó: OKNH làhình bình hành
=>ON cắt KH tại trung điểm của mỗi đường
mà M là trung điểm của ON
nên M là trung điểm của KH
=>K,M,H thẳng hàng
a: Xét tứ giác ABCD có
O là trung điểm của AC
O là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
b: Xét tứ giác ABCD có
O là trung điểm của AC
O là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD