Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cau a, thi de roi
có góc FKE a góc nội tiếp chắn nửa đt(O)=>goc FKE=90
tam giác FHS đồng dạng với tam giác PKS vi:
FSH=PSK
EFK=EPH(vì E là điểm chính giữa cung lớn MN=>cũng EN=cũng MEFK là góc nội tiếp EHP là góc có đỉnh ngoài đt(O))(ban tu tinh 2 goc do )
nen PHF=PKF=90=>PHE=90 =>TU GIAC NT(2 GOC DOI 180)
DT(O) CO EH vuong goc voiMN (PHE=90) nen EH la duong trung truc cua MN=>FN=FM=>cung FN=cungFM(may cai nay co trong sach giao khoa do minh ko noi chi tiet)
=>goc NKF=goc MKF(2 goc nt chan 2 cung = nhau)
=> phan giac ....
c,
CO GOC FOM=GOC FON (2 goc o tam chan 2 cung = nhau )=>goc NOM =80
\(l_{MFN}\) =....(dung may cong thuc trong sach giao khoa ay)
dien h OMFN cung dung cong thuc trong sgk tu tim hieu nhe moi nho lau
a: góc CIM=góc CNM=1/2*180=90 độ
=>NM vuông góc BC
góc MAB+góc MNB=180 độ
=>MABN nội tiếp
góc CAB=góc CIB=90 độ
=>CIAB nội tiếp
b: góc ANM=góc MBA
góc INM=góc ICA
mà góc MBA=góc ICA
nên góc ANM=góc INM
=>NM là phân giác của góc ANI
c: Xét ΔBNM vuông tại N và ΔBIC vuông tại I có
góc NBM chung
=>ΔBNM đồng dạng với ΔBIC
=>BN/BI=BM/BC
=>BN*BC=BI*BM
Xét ΔCNM vuông tại N và ΔCAB vuông tại A có
góc NCM chung
=>ΔCNM đồng dạng với ΔCAB
=>CN/CA=CM/CB
=>CN*CB=CA*CM
=>BM*BI+CM*CA=BC^2=AB^2+AC^2
a: NP=10(cm)
\(\widehat{P}=37^0\)
\(\widehat{N}=53^0\)
a, \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)
\(\sin N=\dfrac{MP}{NP}=\dfrac{4}{5}\approx\sin53^0\Rightarrow\widehat{N}\approx53^0\\ \widehat{P}=90^0-\widehat{N}\approx37^0\)
b, \(\dfrac{NE}{PE}=\dfrac{MN}{MP}=\dfrac{3}{4}\Rightarrow NE=\dfrac{3}{4}PE\)
\(NE+PE=NP=10\Rightarrow\dfrac{7}{4}PE=10\Rightarrow\left\{{}\begin{matrix}PE=\dfrac{40}{7}\left(cm\right)\\NE=\dfrac{30}{7}\left(cm\right)\end{matrix}\right.\)