K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt hai điểm B1;C1 lần lượt là E,F

Xét ΔAFB vuông tại F có FK là đường cao

nên \(AK\cdot AB=AF^2\left(1\right)\)

Xét ΔAEC vuông tại E có EG là đường cao

nên \(AG\cdot AC=AE^2\left(2\right)\)

Xét ΔAGB vuông tại G và ΔAKC vuông tại K có

góc KAC chung

Do đó: ΔAGB\(\sim\)ΔAKC

Suy ra: AG/AK=AB/AC

hay \(AG\cdot AC=AK\cdot AB\left(3\right)\)

Từ (1) và (2) suy ra AE=AF

12 tháng 3 2017

Xét tam giác ABC vuông tại A có AD vuông góc với BC

=> AB2B=DC.BC; AC2=DC.BC

tam giác ABD vuông tại D có DF vuông góc với AB =>BD2=BF.AB

Tương tự DC2=CE.AC

Ta có \(\dfrac{AC^2}{AB^2}\)=\(\dfrac{DC.BC}{DB.BC}\)=\(\dfrac{DC}{DB}\)

=> \(\dfrac{AC^4}{AB^4}\)= \(\dfrac{DC^2}{DB^2}\)=\(\dfrac{CE.AC}{BF.AB}\)

=>\(\dfrac{AC^3}{AB^3}\)=\(\dfrac{CE}{BF}\)

12 tháng 3 2017

2/ gọi E là giao của BH với AC; F là giao của CH với AB

=>BE vuông góc với AC; CF vuông góc với AB

Xét tam giác AC1B có C1F vuông góc với AB =>AC12=AF.AB (1)

Tương tự AB12=AE.AC (2)

C/m tam giác AEB đồng dạng với tam giác AFC (g.g)

=> \(\dfrac{AE}{AF}\)=\(\dfrac{AB}{AC}\) => AE.AC=AF.AB (3)

Từ (1);(2) và (3) => AB1=AC1

26 tháng 12 2015

a, 4 điểm B,E,D,C cùng thuộc đường tròn đường kính BC

27 tháng 6 2018

Tự vẽ hình nha bạn

Xét hai tam giác vuông : tam giác DAB và tam giác EAC có : 

góc A là góc chung , góc EAC = góc ADB = 90 độ

=> tam giác DAB đồng dạng tam giác EAC

\(\Rightarrow\frac{AD}{AE}=\frac{AB}{AC}\Rightarrow AB\cdot AE=AD\cdot AC\)

Mặt khác, áp dụng hệ thức về cạnh trong tam giác vuông ABN có đường cao NE : \(AN^2=AE\cdot AB\)

Rồi áp dụng hệ thức đi nha

a: Xét tứ giác AHMK có \(\widehat{AHM}+\widehat{AKM}=90^0+90^0=180^0\)

nên AHMK là tứ giác nội tiếp đường tròn đường kính AM

Tâm là trung điểm của AM

b: Xét (O) có

\(\widehat{BAD}\) là góc nội tiếp chắn cung BD

\(\widehat{BCD}\) là góc nội tiếp chắn cung BD

Do đó: \(\widehat{BAD}=\widehat{BCD}\left(1\right)\)

Ta có: AKMH là tứ giác nội tiếp

=>\(\widehat{KAM}=\widehat{KHM}\)

=>\(\widehat{BAD}=\widehat{KHM}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{BCD}=\widehat{KHM}\)

Xét (O) có

\(\widehat{DAC}\) là góc nội tiếp chắn cung DC

\(\widehat{DBC}\) là góc nội tiếp chắn cung DC

Do đó: \(\widehat{DAC}=\widehat{DBC}\left(3\right)\)

Ta có: AHMK là tứ giác nội tiếp

=>\(\widehat{MAH}=\widehat{MKH}=\widehat{DAC}\left(4\right)\)

Từ (3),(4) suy ra \(\widehat{DBC}=\widehat{MKH}\)

Xét ΔMKH và ΔDBC có

\(\widehat{MKH}=\widehat{DBC}\)

\(\widehat{MHK}=\widehat{DCB}\)

Do đó: ΔMKH~ΔDBC

14 tháng 1 2016

GỌI GIAO ĐIỂM CỦA AH VỚI MB LÀ G

   XÉT 2 TAM GIÁC ĐỒNG DẠNG AKH VÀ MKB ==>\(\frac{KH}{KB}=\frac{AK}{KM}\)<=>KH.KM=AK.BK

ĐỂ KH.BK LỚN NHẤT KHI AK.BK LỚN NHẤT

14 tháng 1 2016

sai đề bài rồi kìa C ở đâu