\(ABC\left(AB>AC\right).\)Gọi \(\left(O\right)\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2020

O I K A E B H F C D G 1 1 2 2

a)

IO = OB – IB => (I) tiếp xúc trong với (O).

OK = OC – KC => (K) tiếp xúc trong với (O)

IK = OH + KH => (I) tiếp xúc ngoài với (K)

b)

Tứ giác AEHF có \(\widehat{A}=\widehat{E}=\widehat{F}=90^o\)   nên là hình chứ nhật

c)

c) \(\Delta AHB\) vuông nên AE.AB = AH2

\(\Delta AHC\)vuông nên AF . AC = AH2

Suy ra AE . AB = AF . AC

d) Gọi G là giao điểm của AH và EF

Tứ giác AEHF là hình chữ nhật => AH = EF

Ta có : GE = GH => \(\Delta GEH\)\(\Rightarrow\widehat{E_1}=\widehat{H_1}\)

Ta lại có \(\Delta IHE\)cân \(\Rightarrow\widehat{E_2}=\widehat{H_2}\)

\(\Rightarrow\widehat{E_1}+\widehat{E_2}=\widehat{H_1}+\widehat{H_2}=90^o\)

Do đó EF là tiếp tuyến của đường tròn (I)

Tương tự, EF là tiếp tuyến của đường tròn (K)

e) - Cách 1:

Ta có: \(EF=AH\le OA\) ( OA có độ dài không đổi )

Do đó EF lớn nhất khi AH = OA

<=> H trùng O hay dây AD đi qua O.

Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.

30 tháng 12 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng j: Đoạn thẳng [A, B] Đoạn thẳng k: Đoạn thẳng [O, M] Đoạn thẳng l: Đoạn thẳng [M, H] Đoạn thẳng m: Đoạn thẳng [H, O] Đoạn thẳng n: Đoạn thẳng [A, M] Đoạn thẳng p: Đoạn thẳng [M, B] Đoạn thẳng q: Đoạn thẳng [A, O] Đoạn thẳng r: Đoạn thẳng [O, B] Đoạn thẳng t: Đoạn thẳng [N, B] Đoạn thẳng b: Đoạn thẳng [E, J_1] Đoạn thẳng e: Đoạn thẳng [N, E] Đoạn thẳng f_1: Đoạn thẳng [E, B] Đoạn thẳng g_1: Đoạn thẳng [A, E] O = (6.36, -0.08) O = (6.36, -0.08) O = (6.36, -0.08) Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm H: Giao điểm đường của f, g Điểm H: Giao điểm đường của f, g Điểm H: Giao điểm đường của f, g Điểm A: Giao điểm đường của c, h Điểm A: Giao điểm đường của c, h Điểm A: Giao điểm đường của c, h Điểm B: Giao điểm đường của c, i Điểm B: Giao điểm đường của c, i Điểm B: Giao điểm đường của c, i Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm K: Giao điểm đường của j, k Điểm K: Giao điểm đường của j, k Điểm K: Giao điểm đường của j, k Điểm N: A đối xứng qua F Điểm N: A đối xứng qua F Điểm N: A đối xứng qua F Điểm E: Giao điểm đường của a, k Điểm E: Giao điểm đường của a, k Điểm E: Giao điểm đường của a, k Điểm J: Trung điểm của A, N Điểm J: Trung điểm của A, N Điểm J: Trung điểm của A, N

a) Theo tính chất hai tiếp tuyến cắt nhau, ta có tam giác MAB cân tại M có MK là phân giác nên đồng thời là đường trung tuyến. Vậy thì K là trung điểm AB hay \(AK=\frac{AB}{2}\)

Ta thấy các tam giác MHO, MAO, MBO đều là các tam giác vuông chung cạnh huyền MO nên M, H, A, O B cùng thuộc đường tròn đường kính MO.

b) Do K là trung điểm AB nên theo tính chất đường kính dây cung, ta có \(\widehat{IKO}=90^o\)

Suy ra \(\Delta IKO\sim\Delta MHO\left(g-g\right)\Rightarrow\frac{OI}{OM}=\frac{OK}{OH}\Rightarrow OI.OH=OM.OK\)

Xét tam giác vuông MBO, đường cao BK, ta có: \(OK.OM=OB^2=R^2\)

Vậy nên \(OI.OH=OK.OM=R^2\)

c) Ta thấy do trung điểm của BN cắt OM tại E nên EN = EB

Lại có EB = EA vì OM là đường trung trực của AB

Suy ra EA = EN hay tam giác EAN cân tại E.

Gọi J là trung điểm AN.

Xét tam giác cân EAN có EJ là trung tuyến nên đồng thời là đường cao.

Vậy thì \(EJ\perp OA\) hay EJ // AM.

Xét tam giác OAM, áp dụng định lý Talet ta có:

\(\frac{OE}{OM}=\frac{OF}{OA}=\frac{2}{3}\)

11 tháng 12 2017

a) AB và AC là tiếp tuyến của (O;R) =>AB⊥OB và AC⊥OC =>B và C nhìn OA góc 90° =>B và C cùng nằm trên đường tròn đường kính AO hay A,B,C,) cùng nằm trên đường tròn đường kính AO.
Hai △AOB và △AOC là 2 tam giác vuông có chung cạnh huyền OA và 2 cạnh góc vuông OB=OC (cùng = R) => △AOB = △AOC =>OA là phân giác ∠BOC mà △BOC cân tại B =>OA là đường trung trực của BC.
b)xét △ODB và △OBA có 2 góc vuông tại D và B, chung góc nhọn tại O =>△ODB ∼ △OBA =>OD/OB=OB/OA =>OA.OD=OB²=R².

15 tháng 12 2017

A B O C H D E F

a) Do C thuộc đường tròn nên \(\widehat{ACB}=90^o\)

Áp dụng định lý Pi-ta-go: \(BC=\sqrt{10^2-6^2}=8\left(cm\right)\)

Xét tam giác vuông ACB, đường cao CH. Áp dụng hệ thức lượng trong tam giác, ta có:

\(CH.AB=CA.BC\Rightarrow CH=\frac{6.8}{10}=4,8\left(cm\right)\)

Ta thấy \(sin\widehat{ABC}=\frac{AC}{AB}=\frac{6}{10}\Rightarrow\widehat{ABC}\approx36^o52'\)

b) Theo tính chất hai tiếp tuyến cắt nhau, ta có: \(DC=DB\) và DO là phân giác góc BDC.

Vậy thì DO cũng là đường trung trực của BC hay \(DO\perp BC.\)

c) Xét tam giác vuông ABC, đường cao CH, ta có : \(AH.AB=AC^2\) (Hệ thức lượng)

Xét tam giác vuông AEB, đường cao AC, ta có: \(AC^2=EC.CB\) (Hệ thức lượng)

Vậy nên \(AH.AB=EC.CB\)

d) Ta thấy HC // AE (Cùng vuông góc với AB)

Áp dụng Ta let ta có: \(\frac{IH}{AF}=\frac{IC}{EF}\left(=\frac{IB}{FB}\right)\)

mà IH = IC nên AF = FE.

Xét tam giác vuông ACE có F là trung điểm cạnh huyền nên FA = FE = FC.

Xét tam giác FAO và FCO có: FO chung, FA = FC, AO = CO nên \(\Delta FAO=\Delta FCO\left(c-c-c\right)\) 

\(\Rightarrow\widehat{FCO}=\widehat{FAO}=90^o\)

Vậy nen FO là tiếp tuyến của đường tròn.

15 tháng 12 2021

có góc AQB= 90 độ( góc nội tiếp chắn nửa đường tròn tâm O) Hay góc AQP=90 độ => góc QAP= 90 độ- góc QPA=90 độ-1/2sđ cung AP

có góc APC= 90 độ( góc nội tiếp chắn nửa đường tròn tâm O1)=> góc PAC=90 độ - góc PCA=90 độ - 1/2sđ cung AP

Vì vậy góc QAP= góc PAC hay AP là tia phân giác của  góc QAB

15 tháng 12 2021

Ta có: góc BQA =90o (góc nội tiếp chắn nửa (O))

Xét Δ PQA vuông tại Q có: góc QAP + góc QPA =90o ⇒ góc QAP=90o- góc QPA 

Mà góc QPA =1/2 sđ cung PA ( góc QPA là góc tạo bởi tia tiếp tuyến cà dây cung chắn cung AP của (O1))

⇒góc QAP=90o- 1/2 sđ cung PA (1)

Xét ΔCPA vuông tại P ( vì góc CPA là góc nội tiếp chắn nửa (O1)) có

góc PCA + góc PAC =90o⇒góc PAC =90o-góc PCA 

mà góc PCA =1/2 sđ cung PA ( góc nội tiếp chắn cung PA )

⇒góc PAC= 90o-1/2 sđ cung PA (2)

Từ (1) và (2) ⇒ góc QAP=góc PAC ⇒ AP là tia phân giác của góc QAB

 

19 tháng 12 2017

Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo tại đây nhé.

19 tháng 12 2017

OMABICDEF

a) Ta thấy OAM và OBM là các tam giác vuông có chung cạnh huyền OM nên A, O, B, M cùng thuộc đường tròn đường kính OM.

b) Theo tính chất hai tiếp tuyến cắt nhau thì MA = MB và MI là tia phân giác góc AMB.

Vậy thì tam giác MAB cân tại M, có phân giác MI đồng thời là đường cao.

Vậy nên \(OM\perp AB\) tại I.

c) Do D thuộc đường tròn (O) nên OC = OB = OD.

Suy ra tam giác BDC vuông tại D.

Xét tam giác vuông CBM, đường cao BD, ta có: \(MD.MC=BM^2\)  (Hệ thức lượng)

Xét tam giác vuông OBM, đường cao BI, ta có: \(MI.MO=BM^2\)  (Hệ thức lượng)

Vậy nên MD.MC = MI.MO

d) Ta thấy CEF và CAF là các tam giác vuông có chung cạnh huyền CF nên FAEC nội tiếp đường tròn đường kính CF.

\(\Rightarrow\widehat{FCE}=\widehat{EAB}\) (Hai góc nội tiếp cùng chắn cung CO)

Lại có O,E, A, M, B cùng thuộc đường tròn đường kính OM nên \(\widehat{EAB}=\widehat{EMB}\) (Hai góc nội tiếp cùng chắn cung EB)

\(\Rightarrow\widehat{FCE}=\widehat{EMB}\)

Ta có \(\widehat{EMB}+\widehat{ECB}=90^o\Rightarrow\widehat{FCE}+\widehat{ECB}=90^o\)

\(\Rightarrow\widehat{FCB}=90^o\)

Vậy FC là tiếp tuyến của đường tròn (O).

2 tháng 6 2018

A B C O I K E M N G

a) Xét đường tròn (O) bán kính AB có điểm E nằm trên cung AB => ^AEB=900 hay ^MEN=900

Tương tự ^CNB=^AMC=900 => ^EMC=^ENC=900.

Xét tứ giác MENC: ^MEN=^EMC=^ENC=900 => Tứ giác MENC là hình chữ nhật.

=> MN=EC (đpcm).

b) Gọi G là tâm của hình chữ nhật MANC => GN=GC.

Xét \(\Delta\)GCK và \(\Delta\)GNK: GC=GN; GK chung; CK=NK => \(\Delta\)GCK=\(\Delta\)GNK (c.c.c)

=> ^GCK=^GNK. Mà ^GCK=900 => GNK=900 => MN vuông góc NK

=> MN là tiếp tuyến của (K) với N là tiếp điểm.

Tương tự ta cũng c/m được MN là tiếp tuyến của (I) với M là tiếp điểm.

=> MN là tiếp tuyến chung của (I) và (K) (đpcm).

c) Dễ thấy \(\Delta\)ACE ~ \(\Delta\)ECB => \(\frac{AC}{CE}=\frac{CE}{CB}\Rightarrow CE^2=AC.CB\)

Thay AC=10 (cm); CB=40 (cm) vào biểu thức trên, ta có:

\(CE^2=10.40=400\Leftrightarrow CE=\sqrt{400}=20\)(cm)

Lại có CE=MN (cmt) => MN =20 (cm).

d) Ta có: \(S_{\frac{1}{2}\left(I\right)}=\frac{\left(\frac{1}{2}AC\right)^2.3,14}{2}=\frac{\left(\frac{1}{2}.10\right)^2.3,14}{2}=39,25\)(cm2)

\(S_{\frac{1}{2}\left(K\right)}=\frac{\left(\frac{1}{2}CB\right)^2.3,14}{2}=\frac{\left(\frac{1}{2}.40\right)^2.3,14}{2}=628\)(cm2)

\(S_{\frac{1}{2}\left(O\right)}=\frac{\left[\frac{1}{2}\left(AC+CB\right)\right]^2.3,14}{2}=\frac{\left(\frac{1}{2}.50\right)^2.3,14}{2}=981,25\)(cm2)

\(\Rightarrow S_{G.H}=S_{\frac{1}{2}\left(O\right)}-\left(S_{\frac{1}{2}\left(I\right)}+S_{\frac{1}{2}\left(K\right)}\right)=981,25-\left(39,25+628\right)=314\)(cm2)

(Chú thích \(S_{G.H}:\)Diện tích hình được giới hạn bở 3 nửa đường tròn).

ĐS:...