Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
hay AC=20(cm)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow HB^2=AB^2-AH^2=13^2-12^2=25\)
hay HB=5(cm)
Ta có: HB+HC=BC(H nằm giữa B và C)
nên BC=5+16=21(cm)
Vậy: AC=20cm; BC=21cm
AH \(\perp\) BC ( gt )
\(\Rightarrow\) Tam giác HAC vuông tại H
\(\Rightarrow\) \(^{AC^2}\) = \(^{AH^2}\) + \(^{HC^2}\)
\(\Rightarrow\) \(^{AC^2}\)= \(^{12^2}\) + \(^{16^2}\)
\(\Rightarrow\) \(^{AC^2}\)= 144 + 256
\(\Rightarrow\) \(^{AC^2}\)= 400
\(\Rightarrow\) AC = 20 ( cm )
AH \(\perp\) BC ( gt )
\(\Rightarrow\) Tam giác HAB vuông tại H
\(\Rightarrow\) \(AB^2\) = \(AH^2\) + \(BH^2\)
\(\Rightarrow\) \(BH^2\) = \(AB^2\) - \(AH^2\)
\(\Rightarrow\) \(BH^2\) = \(13^2\) - \(12^2\)
\(\Rightarrow\) \(BH^2\) = 169 - 144
\(\Rightarrow\) \(BH^2\) = 25
\(\Rightarrow\) BH = 5 ( cm )
Có: BH + HC = BC ( Vì H nằm giữa B và C )
\(\Rightarrow\) 5 + 16 = 21 ( cm )
Vậy AC = 20 cm
BC = 21 cm
Học tốt
dễ
AC2=162+122=400=202 =>AC=20 cm
BH2=132-122=25=52 =>BH=5 => BC = 16+5=21 cm
Áp dụng định lý Py-ta-go vào tâm giác AHC,ta có:
AC2 = HC2 + HC2
hay AC2=122 + 162
AC2=144 + 256
AC=20 (vì AC>0)
Áp dụng đinh lý Py-ta-go vào tâm giác vuông ABH, ta được
AB2=AH2+BH2
132=122 + BH2
BH2= 169-144
BH=5
Vậy BC=16+5=21
Cho tam giác nhọn ABC. Kẻ AH vuông góc với BC (H thuộc BC). Biết AB=13cm,AH=12cm,HC=16cm. Tính AC,BC
Xét tam giác AHC có góc AHC=90
=>Tam giác AHC vuông tai H
Áp dụng định lí Py ta go cho tam giác AHC , ta có
AH^2+HC^2=AC^2
=>12^2+16^2=AC^2
=>400=AC^2
=>AC=20(cm)
Áp dụng định lí Py ta go cho tam giác AHB , ta có
AH^2+HB^2=AB^2
=>12^2+HB^2=13^2
=>HB^2=25
=>HB=5(cm)
Ta có BH+HC=BC
=>5+16=BC
=>BC=21 (cm)
Vậy AC=20cm ; BC=21cm
AC^2=AH^2+HC^2(py ta go)
AC^2=144+256=200 cm
suy ra AC=20 cm
AB^2=AH^2+BH^2
BH^2=AB^2-AH^2
BH^2=1169-144=25cm
BH=5cm
Mà BH+HC=BC suy ra 5+16=21
vạy AC=20 cm, BC=21cm