K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

Xét tam giác AEF và tam giác ABC có:

A chung

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\left(=cosA\right)\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=cos^2A=1-sin^2A\)

15 tháng 12 2021

\(1-\sin^2A=\cos^2A=\dfrac{AF^2}{AC^2}\left(1\right)\)

Ta có \(\widehat{AEB}=\widehat{AFC}=90^0\Rightarrow\Delta AEB\sim\Delta AFC\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\\ \Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AF}{AC}\right)^2=\dfrac{AF^2}{AC^2}\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)

23 tháng 6 2017

a, bc^2 = ab^2 +ac^2 

      <=.> (ae+eb)^2   +(af+fc)^2

     <=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC 

<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)

<=>EB^2 +CF^2 + AH ^2  + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF 

<=>EB^2 +CF^2+3 AH^2  (đpcm)

b, cb =2a là thế nào vậy

25 tháng 6 2017

đề bài cho vậy 

27 tháng 1 2019

A B C O D I H E F K G T G 0 L

a) Ta thấy: \(\Delta\)ABC nhận H làm trực tâm nên ^BHC + ^BAC = 1800 (1)

Ta có: ^FKE = ^BKC = 1800 - ^KBC - ^KCB = 1800 - ^EAD - ^FAD = 1800 - ^EAF => ^BKC + ^BAC = 1800 (2)

Từ (1) và (2) suy ra: ^BHC = ^BKC => Tứ giác BHKC nội tiếp => ^KHC = ^KBC = ^CAD

Mà AD đi qua tâm ngoại tiếp (O) của \(\Delta\)ABC, AH vuông góc BC nên dễ thấy ^CAD = ^BAH

Từ đó: ^KHC = ^BAH = ^BCH => HK // BC (2 góc so le trong bằng nhau) (đpcm).

b) Qua B kẻ đường thẳng song song với CK cắt (O) tại điểm thứ hai G.

Xét (O): ^BGC + ^BAC = 1800. Mà ^BKC + ^BAC =1800 (cmt) nên ^BGC = ^BKC

=> ^KBC = ^GCB => BK // CG => Tứ giác BKCG là hình bình hành => S = SBGC

Hạ GT vuông góc BC thì S = SBGC = GT.BC/2 < G0L.BC/2 (Với G0 là điểm chính giữa cung BC không chứa A)

Lại có: ^LBG0 = 1/2.Sđ(BC = ^BAC/2 => G0L = BL.tan^BAC/2 hay G0L = BC/2 . tan^BAC/2

Suy ra: S < BC/2 . tan^BAC/2 . BC/2 = (BC/2)2.tan^BAC/2 (đpcm).

c) +) Chứng minh BF.BA - CE.CA = BD2 - CD2 ?

Theo tính chất góc nội tiếp: ^KED = ^BED = ^BAD = ^DAF = ^DCF = ^DCK => Tứ giác DKEC nội tiếp

Tương tự: Tứ giác DKFB nội tiếp. Áp dụng phương tích đường tròn:

BF.BA - CE.CA = BD.BC - CD.CB = BC(BD-CD) = (BD+CD)(BD-CD) = BD2 - CD2 (đpcm).

+) Chứng minh: DI vuông góc với BC ?

Từ câu a ta có: ^EKF + ^EAF = 1800 => Tú giác AEKF nội tiếp => K nằm trên (AEF)

Nối I với E và F thì có: ^IFK + ^IEK = ^IKF + ^IKE = ^EKF = ^BKC

=> ^IFK + ^IEK + ^KBC + ^KCB = ^IFK + ^IEK + ^KFD + ^KED = ^IFD + ^IED = 1800 (Do DKEC;DKFB nội tiếp)

Suy ra: Tứ giác DEIF nội tiếp => ^IDF = ^IEF = ^IFE = ^IDE. Kết hợp với ^BDF = ^CDE (=^BAC)

Dẫn đến ^IDF + ^BDF = ^IDE + ^CDE => ^IDB = ^IDC => ID vuông góc BC (2 góc kề bù bằng nhau) (đpcm).

6 tháng 3 2020

i love you

13 tháng 10 2019

a,b mình làm đc rồi các ban làm giúp mình câu c nha 

24 tháng 10 2021

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\widehat{FAC}\) chung

Do đó: ΔAEF\(\sim\)ΔABC

24 tháng 8 2021

undefined

 

Có \(\Delta ECB\) vuông tại E và có EM là đường trung tuyến

\(\Rightarrow EM=\dfrac{1}{2}BC=BM\) 

\(\Rightarrow\Delta EBM\) cân tại M

\(\Rightarrow\widehat{BEM}=\widehat{MBE}\)

mà \(\widehat{MBE}=\widehat{CAD}\) (vì cùng phụ góc BCA)

\(\Rightarrow\widehat{BEM}=\widehat{CAD}\) 

\(\Rightarrow\)EM là tiếp tuyến của (C1)

CM tương tự đc EM là tiếp tuyến của (C2)