Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆ADE và ∆ADB ta có:
AE = AB (gt)
(AD là tia phân giác của )
AD (cạnh chung)
Do đó ∆ADE = ∆ADB (c.g.c)
Mà là góc ngoài của tam giác ADE
Nên
b) Ta có là góc ngoài của tam giác ACD)
Mà (câu a)
∆CDE có DC > ED (định lí cạnh đối diện với góc lớn hơn)
Mà ED = BD (∆ADE = ∆ADB). Do vậy DC>BD.
Bổ sung đề: Trên tia đối của tia BA, lấy F sao cho BF=EC
a: Xét ΔADB và ΔADE có
AD chung
\(\widehat{DAB}=\widehat{DAE}\)
AB=AE
Do đó: ΔADB=ΔADE
b: AB+BF=AF
AE+EC=AC
mà AB=AE
và BF=EC
nên AF=AC
c: ta có; ΔABD=ΔAED
=>\(\widehat{ABD}=\widehat{AED}\)
Ta có: \(\widehat{ABD}+\widehat{DBF}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)
nên \(\widehat{DBF}=\widehat{DEC}\)
Ta có; ΔABD=ΔAED
=>DB=DE
Xét ΔDBF và ΔDEC có
DB=DE
\(\widehat{DBF}=\widehat{DEC}\)
BF=EC
Do đó: ΔDBF=ΔDEC
a, Xét Δ ADB và Δ ADE có:
AD chung
góc BAD = góc EAD
AB = AE
⇛Δ ADB =Δ ADE(c-g-c)
a: Xét ΔADB và ΔADE có
AD chung
góc BAD=góc EAD
AB=AE
=>ΔABD=ΔAED
b: Xét ΔBHD vuông tại H và ΔEKD vuông tại K có
DB=DE
góc DBH=góc DEK
=>ΔBHD=ΔEKD
=>BH=EK
c: góc DEM=góc KDE
góc KDE=góc BDH
=>góc DEM=góc BDH
d: góc DEM+góc ACD
=góc BDH+góc ACD
=90 độ-góc CDE