K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
5 tháng 3 2019
- Xét ΔDAC và ΔBAE ta có:
AB=AD (ΔABD vuông cân ở A)
AC=AE (ΔACE vuông cân ở A)
DAC^=BAE^=BAC^+90o
→ΔDAC=ΔBAE (cgc)
→DC=BE (2 cạnh tương ứng) (1)
- Ta có P;M;N là trung điểm BC;BD;EC nên
+ PN là đường trung bình ΔBEC→PN=EB/2 (2);PN//EB
+ PM là đường trung bình ΔBCD→PM=DC/2 (3);PM//DC
+ từ (1); (2); (3) ta có PN=PM (*)
+ M1^M1^ là góc ngoài tại đỉnh M của ΔEMC nên M1^=E1^+MCE^=E1^+C1^+C2^
Mà C2^=E2^ (ΔDAC=ΔBAE). Thay vào ta có
M1^=E1^+C1^+E2^=AEC^+C1^=90o (vì ΔAEC vuông cân ở A)
→DC⊥BE→DC⊥BE. Mà BE//PN→PN⊥DC
Mà PM//DC→PN⊥PM→MPN^=90o (*)(*)
+ Từ (*) và (*)(*) ta có ΔMPN vuông cân ở P (đpcm)