K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

A B C H L F K O I G P D Q

a) Ta có: Điểm K đối xứng với điểm F qua AC => FC=KC;  AF=AK 

=> \(\Delta\)ACF=\(\Delta\)ACK (c.c.c) => ^AFC=^AKC (2 góc tương ứng) 

Ta thấy tứ giác ABFC nội tiếp đường tròn tâm O => ^AFC=^ABC.

H là trực tâm của tam giác ABC => CH\(\perp\)AB (tại D)

=> ^HCB + ^ABC = 900 (1)

 Lại có AH\(\perp\)BC => ^LHC + ^HCB = 900 (2)

Từ (1) và (2) => ^ABC=^LHC. Mà ^LHC + ^AHC = 1800

=> ^ABC + ^AHC = 1800. Do ^ABC=^AFC=^AKC (cmt) => ^AKC + ^AHC= 1800

Xét tứ giác AHCK có: ^AKC + ^AHC =1800 => Tứ giác AHCK nội tiếp đường tròn (đpcm).

b) AO cắt GI tại Q

Gọi giao điểm của AO và (O) là P = >^ACP=900 => ^CAP+^CPA=900 (*)

Thấy tứ giác ACPB nội tiếp đường tròn (O) => ^CPA=^ABC 

Mà ^ABC+^AHC=1800 => ^CPA+^AHC=1800 (3).

Ta có tứ giác AHCK là tứ giác nội tiếp (cmt) => ^KAI=^CHI

Lại có \(\Delta\)ACF=\(\Delta\)ACK => ^FAC=^KAC hay ^KAI=^GAI  => ^GAI=^CHI

Xét tứ giác AHGI: ^GAI=^GHI (=^CHI) (cmt) = >Tứ giác AHGI nội tiếp đường tròn

=> ^AIG+^AHG=1800 hay ^AIG + ^AHC=1800 (4)

Từ (3) và (4) => ^AIG=^CPA (**)

Từ (*) và (**) => ^CAP+^AIG=900 hay ^IAQ+^AIQ=900 => \(\Delta\)AIQ vuông tại Q

Vậy AO vuông góc với GI (đpcm).

23 tháng 1 2020

1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)

 ~~~~~~~~~ Bài làm ~~~~~~~~~

A B C O I K H Q D

Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))

\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)

Ta lại có: \(BD\perp HK\)

\(\Rightarrow BD\) là đường trung trực của \(HK\)

\(\Rightarrow\Delta IHK\) cân tại \(I\)

\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)

Lại có:\(\widehat{DKO}=\widehat{HAO}\)\(\Delta OKA\) cân tại \(O\))

Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)

\(\Rightarrow\widehat{KIO}=90^0\)

\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)

(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )

24 tháng 1 2020

Ủa bạn ơi sao phụ nhau? Dòng đầu ấy

đề sai à bn

1: góc AMO+góc ANO=180 độ

=>AMON nội tiếp

2: ΔOAB cân tại O

mà OM là đường cao

nên M là trung điểm của AB

ΔOAC cân tại O

mà ON là đường cao

nên N là trung điểm của AC

=>NM là đừog trung bình

=>MN//BC

=>MN//AE

=>AMNE là hình thang cân

=>AM=EN; AN=EM

ΔAHB vuông tại H có HM là trung tuyến

nên HM=AB/2=MA=MB

ΔHAC vuông tại H có HN là trung tuyến

nên HN=AN=CN=AC/2

=>HM=EN; HN=EM

=>HMEN là hình bbình hành

=>K làtrung điểm của MN

=>IK vuông góc MN

=>IK vuông góc BC

3: goc MDE+gó MDH=180 độ

=>góc MDE=góc MBH

=>BMDH nội tiếp

=>góc MDB=góc MHB=góc MBH

=>góc MDB=góc MDE

=>DM là phân giác của góc BDE

1 tháng 5

ohotại sao phải đi cm M,N lần lượt là trung điểm của AB,AC trg khi nó có sẵn trg đề bài?

 

a: góc AHM+góc AKM=90+90=180 độ

=>AHMK là tứ giác nội tiếp

b: Xét ΔMBH vuông tại H và ΔMCK vuông tại K có

góc MBH=góc MCK

=>ΔMBH đồng dạng với ΔMCK

=>MB/MC=MH/MK

=>MB*MK=MC*MH

22 tháng 1 2022

mình sửa lại rồi

 

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét tứ giác ACEH có

\(\widehat{ACE}+\widehat{AHE}=180^0\)

Do đó: ACEH là tứ giác nội tiếp