K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2022

bài này mới chữa trên lớp =))

2 tháng 2 2022

r làm đi =)

8 tháng 4 2020

Chỉ mình đi mọi người

1 tháng 4 2019

H A B C D E O F

a) Xét tam giác AEC và tam giác ADB

có:

\(\widehat{AEC}=\widehat{ADB}=90^o\)

\(\widehat{EAC}=\widehat{DAB}\)( đối đỉnh)

=> \(\Delta AEC~\Delta ADB\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\Rightarrow AE.AB=AD.AC\)

b) Xét tam giác HCB có hai đường cao CD và BE cắt nhau tại A 

=> A là trực tâm tam giác ACB

=> HA vuông BC

=> AF vuông BC

Xét tứ giác BFEH có:

\(\widehat{BFH}=\widehat{HEB}=90^o\)

=> BFEH nội tiếp

c) Ta có: \(\widehat{EOC}=2\widehat{EBC}\)( góc ở tâm có độ lớn gấp 2 lần góc nội tiếp cùng chắn một cung)

Xét tứ giác ADBF có: \(\widehat{ADB}+\widehat{AFB}=90^o+90^o=180^o\)

=> ADBF nội tiếp 

=> \(\widehat{ABF}=\widehat{ADF}\)( cùng chắn cung AF) hay \(\widehat{EBC}=\widehat{CDF}\)

Mặt khác \(\widehat{EDC}=\widehat{EBC}\)( cùng chắn cung EC)

=> \(\widehat{EOC}=2.\widehat{EBC}=\widehat{CDF}+\widehat{EDC}=\widehat{EDF}\)

=> \(\widehat{FOE}+\widehat{FDE}=\widehat{FOE}+\widehat{EOC}=180^o\)( hai góc bù nhau)

=> Tứ giác DEOF nội tiếp

a, Gọi I là trung điểm của BC 

Tam giác BEC vuông tại E trung tuyến EI nên IE = IB = IC 

Tam giác BFC vuông tại F trung tuyến FI nên IF = IB = IC

Vậy tứ giác BEFC cùng thuộc đường tròn tâm I bán kính IB 

b,  Ta có :

\(\widehat{ACK}=90^0\) ( góc nội tiếp chắn nửa đường tròn )

= > BH // CK ( cùng vuông góc với AC )

Tương tự ta cũng có CH // BK 

= > BHCK là hình bình hành

= > 2 đường chéo cắt nhau tại trung điểm của mỗi đường

Mà I là trung điểm của BC 

= > H,I,K thẳng hàng ( đpcm )

c, Dễ thấy các tứ giác AFHE và BFHD nội tiếp nên :

\(\widehat{DFE}=\widehat{DFH}+\widehat{HFE}=\widehat{HBD}+\widehat{HAF}=2\widehat{HBD}=2.\left(90^0-\widehat{C}\right)=180^0-2\widehat{C}\)

( Do góc HBD và HAF cùng phụ với góc C )

Lại có :

Tam giác EIC cân tại I nên :

\(\widehat{EIC}=180^0-\widehat{IEC}-\widehat{ECI}=180^0-2\widehat{C}\)

\(=>\widehat{EIC}=\widehat{DFE}\)

= > Tứ giác DFEI là tứ giác nội tiếp 

= > D,F,E,I cùng thuộc 1 đường tròn 

1 tháng 3 2016

a)Gọi I là trung điểm của tam giác BC

Áp dụng đường trung tuyến cạnh huyền của tam giác EBC và DBC

=>IE=ID=IB=IC

=> tứ giác BCDE nội tiếp.  tâm đường tròn là I

b)AFK=90 ( dg cao thứ 3)

ACK=90 (chắn nữa dg tròn)

=>AFB=ACK

c)BD vg góc với AC

ACK=90 =>CK vg góc với AC

=>CK song song với BH

tuong tu CH song song voi BK

=>BHCK là hinh binh hanh

*vì I là trung điểm của BC 

=>I cung la trung diem cua HK

=>H,I,K thang hang

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp đường tròn đường kính BC

I là trung điểm của BC

b: góc ABK=1/2*sđ cung AK=90 độ

=>BK//CH

góc ACK=1/2*sđ cung AK=90 độ

=>CK//BH

mà BK//CH

nên BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>H,I,K thẳng hàng

c: Theo câu b, ta được: H là tâm đường tròn ngoại tiếp ngũ giác DEKFO

OH vuông góc MN

=>MN là đường kính của (H)

=>HM=HN

22 tháng 11 2022

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

nên BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔDAH có DI/DH=DO/DA

nen Io//AH và IO=AH/2

=>AH=2OI

 

26 tháng 4 2018

Nhắc lại kiến thức 

2 điểm đối xứng nhau qua 1 đường thẳng thì đường thẳng ấy là đường trung trực của đoạn thẳng nối 2 điểm đó.

+ Cách tư duy: K là điểm đối xứng của H qua BC => BC phải là đường trung trực của đoạn HK tức là BC vuông góc với HK tại trung điểm của đoạn HK. Mà AF là đường cao của tam giác ABC => AF \(\perp\)BC tại F => Nếu K là điểm đối xứng của H qua BC thì K phải thuộc đường thẳng AF và F phải là trung điểm của HK. 

Bạn giả sử IK || BC, vì BC vuông góc với AF (gt) => IK vuông góc với AF => K thuộc đường tròn đường kính IA (hay chính là K thuộc đường tròn (O)). Bài toán bây giờ trở thành bạn đi chứng minh K thuộc (O) là enter :)))

+ Cách chứng minh: Kéo dài AF cắt đường tròn (O) tại điểm M, và bây giờ đi chứng minh K trùng M

Giải:

Kéo dài AF cắt (O) tại M 

ta có \(\widehat{BAM}=\widehat{BCM}\)(cùng = \(\frac{1}{2}sđ\widebat{BM}\)) (1)

lại có: \(\widehat{BAM}=\widehat{BCE}\)cùng phụ với góc \(\widehat{B}\)(2)

Từ (1) và (2) => BC là đường phân giác của góc \(\widehat{HCM}\)

Xét tam giác HCM có BC vừa là đường cao vừa là đg phân giác => HCM là tam giác cân tại C => BC là đường trung trực của đoạn HM => M là điểm đối xứng của H qua BC => M trùng với K => K thuộc đường tròn (O) 

Ta có \(\widehat{AKI}=90^o\)(góc nội tiếp chắn nửa đường tròn) => IK \(\perp\)AK mà BC \(\perp\)AK (do AK là đường cao) => IK//BC (2 đg thẳng cùng vuông góc với 1 đường thẳng thì chúng song song với nhau) => ĐPCM