K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2016

A B C H E F

7 tháng 10 2016

Xét ΔABH vuông tại H(gt)

=> \(AH^2=AE\cdot AB\)   (1)

Xét ΔAHC vuông tại C(gt)

=>\(AH^2=AF\cdot AC\)    (2)

Từ (1)(2) suy ra:

AE.AB=AF.AC

b) Xét ΔABH vuông tại H(gt)

=> \(AB^2=AH^2+BH^2=3^2+4^2=9+16=25\)

=>AB=25

Áp dụng hệ thức ta có:

\(AH^2=AE\cdot AB\)

=> \(AE=\frac{AH^2}{AB}=\frac{4^2}{5}=\frac{16}{5}\)

Có: AB=AE+BE

=>BE=AB-AE= \(5-\frac{16}{5}=\frac{9}{5}\)

 

 

a: góc AEB=góc AHB=90 độ

=>AEHB nội tiếp

Xét ΔAHB vuông tại H và ΔACD vuông tại C có

góc ABH=góc ADC

=>ΔAHB đồng dạng với ΔACD
b: góc HAC+góc AHE

=góc ABE+90 độ-góc HAB

=90 độ

=>HE vuông góc AC

=>HE//CD

26 tháng 10 2023

a: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>CE\(\perp\)AB

Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

=>BF\(\perp\)AC

XétΔABC có

CE,BF là đường cao

CE cắt BF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

b: Xét ΔAEC vuông tại E và ΔAFB vuông tại F có

\(\widehat{A}\) chung

Do đó: ΔAEC ~ΔAFB

=>\(\dfrac{AE}{AF}=\dfrac{AC}{AB}\)

=>\(AE\cdot AB=AC\cdot AF;\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

c: Xét ΔAEF và ΔACB có

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

\(\widehat{FAE}\) chung

Do đó: ΔAEF~ΔACB

=>\(\widehat{AEF}=\widehat{ACB}\)

d: Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=180^0\)

=>AEHF là tứ giác nội tiếp

=>A,E,H,F cùng thuộc một đường tròn