K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

kẻ đường cao AH,BD,CK 

ta có sinA=BD/AB=> BD=sinA.AB

         sinB=CK/BC=> CK=sinB.BC

         sinC=AH/AC=> AH=sinC.AC

ta có sin B=KC/BC=KC/a; sinB=AH/AB=AH/c

=> KC/a=AH/c

=> \(\frac{sinB.a}{a}=\frac{sinC.b}{c}\)

=> \(sinB=\frac{sinC.b}{c}\)

=> sinB.c=sinC.b

=> \(\frac{b}{sinB}=\frac{c}{sinC}\left(1\right)\)

ta lại có sinC=AH/AC=AH/b; sinC=BD/BC=BD/a

=> AH/b=BD/a

=> \(\frac{sinC.b}{b}=\frac{sinA.c}{a}\)

=> sinC.a=sinA.c

=> \(\frac{c}{sinC}=\frac{a}{sinA}\left(2\right)\)

(1),(2)=> a/sinA=b/sinB=c/sinC (đpcm)

AH
Akai Haruma
Giáo viên
30 tháng 10 2021

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/hoi-dap/tim-kiem?id=62067&q=cho%20tam%20gi%C3%A1c%20ABC%20nh%E1%BB%8Dn%20c%C3%B3%20BC%3Da%3B%20AC%3Db%3B%20AB%3Dc%3BCMR%3A%20a%2FsinA%3Db%2FsinB%3Dc%2Fsin%20C

Bài 2: 

a: \(\sin\alpha=\sqrt{1-\left(\dfrac{2}{5}\right)^2}=\dfrac{\sqrt{21}}{5}\)

\(\tan\alpha=\dfrac{\sqrt{21}}{5}:\dfrac{2}{5}=\dfrac{\sqrt{21}}{2}\)

\(\cot\alpha=\dfrac{2}{\sqrt{21}}=\dfrac{2\sqrt{21}}{21}\)

b: Đặt \(\cos\alpha=a;\sin\alpha=b\)

Theo đề, ta có: a-b=1/5

=>a=b+1/5

Ta có: \(a^2+b^2=1\)

\(\Leftrightarrow b^2+\dfrac{2}{5}b+\dfrac{1}{25}+b^2-1=0\)

\(\Leftrightarrow2b^2+\dfrac{2}{5}b-\dfrac{24}{25}=0\)

\(\Leftrightarrow10b^2+2b-24=0\)

=>b=4/5

=>a=3/5

\(\cot\alpha=\dfrac{a}{b}=\dfrac{3}{4}\)

NM
1 tháng 11 2021

ta có :

undefined

10 tháng 7 2016

  Đã xảy ra lỗi rồi. Bạn thông cảm vì sai sót này.

  Ta có:  

Áp dụng hệ quả của bất đẳng thức Cauchy cho ba số không âm 

   trong đó với     , ta có:

  

Tương tự, ta có:

       

Cộng ba bất đẳng thức     và   , ta được:

  

Khi đó, ta chỉ cần chứng minh

  

Thật vậy, bất đẳng thức cần chứng minh được quy về dạng sau:    (bất đẳng thức Cauchy cho ba số   )

Hay       

Mà    đã được chứng minh ở câu    nên    luôn đúng với mọi  

Dấu    xảy ra    

Vậy,       

 
6 tháng 8 2019

Tự vẽ hình 

Kẻ BH \(\perp\)AC và \(CK\perp\)AB

Tam giác AKC vuông tại K

=>CK=bsinA (1)

Tam giác BKC vuông tại K 

=>CK=asinB  (2)

Từ (1) (2)=>bsinA=asinB

<=>\(\frac{a}{sinA}=\frac{b}{sinB}\)

Chứng minh tương tự ta có :\(\frac{a}{sinA}=\frac{c}{sinC}\)

Vậy ....

Kẻ AD⊥BC tại D, BE⊥AC tại E

Xét ΔBAE vuông tại E có \(\sin BAE=\frac{BE}{AB}\)

=>\(BE=AB\cdot\sin BAC\)

Xét ΔABC có BE là đường cao

nên \(S_{ABC}=\frac12\cdot BE\cdot AC=\frac12\cdot AB\cdot\sin BAC\cdot AC=\frac12\cdot b\cdot c\cdot\sin A\left(1\right)\)

Xét ΔBEC vuông tại E có \(\sin C=\frac{BE}{BC}\)

=>\(BE=BC\cdot\sin C\)

Xét ΔABC có BE là đường cao

nên \(S_{ABC}=\frac12\cdot BE\cdot AC=\frac12\cdot BC\cdot\sin C\cdot AC=\frac12\cdot CA\cdot CB\cdot\sin C=\frac12\cdot a\cdot b\cdot\sin C\) (2)

Xét ΔADB vuông tại D có \(\sin ABD=\frac{AD}{AB}\)

=>\(AD=AB\cdot\sin ABD=AD\cdot\sin ABC\)

Xét ΔABC có AD là đường cao

nên \(S_{ABC}=\frac12\cdot AD\cdot BC=\frac12\cdot AB\cdot\sin ABC\cdot BC=\frac12\cdot BA\cdot BC\cdot\sin ABC=\frac12\cdot c\cdot a\cdot\sin B\) (3)

Từ (1),(2),(3) suy ra \(S_{ABC}=\frac12\cdot ab\cdot\sin C=\frac12\cdot ac\cdot\sin B=\frac12\cdot bc\cdot\sin A\)