K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

D cách đều hai cạnh của góc B nên D nằm trên tia phân giác của góc B

Mà theo giả thiết điểm D thuộc trung tuyến AM

Do đó D là giao điểm của đường phân giác góc B với trung tuyến AM

Chọn đáp án D

28 tháng 11 2019

Chọn A

12 tháng 1 2017
bài toán này cũng dễ mà,nó ra là ... thôi bạn tự là đ
6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

*Tự vẽ hình 

a) Xét tam giác ABM và ACM, có :

AB=AC(GT)

AM-cạnh chung

BM=MC(GT)

-> Tam giác ABM=ACM(c.c.c)

b) Do tam giác ABM=ACM (cmt)

-> \(\widehat{AMB}=\widehat{AMC}=90^o\)

-> AM vuông góc BC

c) Xét tam giác AEI và MBI, có :

\(\widehat{EAI}=\widehat{BMI}=90^o\)

\(\widehat{AIE}=\widehat{BIM}\left(đđ\right)\)

AI=IM(GT)

-> tam giác AEI=MBI(g.c.g)

-> AE=BM ( đccm)

d) Chịu. Tự làm nhe -_-'

#Hoctot

11 tháng 1 2021

bạn tự vẽ hình

a, xét tam giác ABM và tam giác ACM có :

AB=AC (gt)

MB=MC (gt)

AM là cạch chung

suy ra tam giác ABM =tam giác ACN (c.c.c)

b, Vì tam giác ABM = tam giác ACN (câu a)

suy ra góc M1= góc M2 (2 góc tương ứng)

mà M1+M2=180 ( 2 góc kề bù)

suy ra : M1=M2= 90 

suy ra AM vuông góc BC

c, Vì tam giác ABM = tam giác ACM (câu a)

suy ra : A1=A2 ( 2 góc tương ứng)

suy ra: AM là phân giác góc BAC

a) Xét ΔAHB vuông tại H và ΔDHB vuông tại H có

BH chung

AH=DH(H là trung điểm của AD)

Do đó: ΔAHB=ΔDHB(hai cạnh góc vuông)

⇒AB=DB(hai cạnh tương ứng)(1)

Xét ΔAMB và ΔEMC có 

AM=EM(M là trung điểm của AE)

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔEMC(c-g-c)

⇒AB=EC(hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra BD=CE(đpcm)

b) Ta có: ΔABH=ΔDBH(cmt)

nên \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)

hay \(\widehat{ABC}=\widehat{DBC}\)

mà tia BC nằm giữa hai tia BA,BD

nên BC là tia phân giác của \(\widehat{ABD}\)(đpcm)

c) Xét ΔACH vuông tại H và ΔDCH vuông tại H có

CH chung

AH=DH(H là trung điểm của AD)

Do đó: ΔACH=ΔDCH(hai cạnh góc vuông)

⇒CA=CD(hai cạnh tương ứng)

Ta có: BA=BD(cmt)

nên B nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: CA=CD(cmt)

nên C nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra BC là đường trung trực của AD(đpcm)

d) Xét ΔBME và ΔCMA có 

BM=CM(M là trung điểm của BC)

\(\widehat{BME}=\widehat{CMA}\)(hai góc đối đỉnh)

ME=MA(M là trung điểm của AE)

Do đó: ΔBME=ΔCMA(c-g-c)

⇒BE=CA(hai cạnh tương ứng)

Xét ΔABC và ΔECB có 

BC chung

AB=EC(cmt)

CA=BE(cmt)

Do đó: ΔABC=ΔECB(c-c-c)

6 tháng 8 2021

đm con mặt lồn

6 tháng 8 2021

im đi Lê Minh Phương

a) Xét ∆AMB và ∆AMC có : 

BM =  MC ( M là trung điểm BC )

AM chung 

AB = AC 

=> ∆AMB = ∆AMC (c.c.c)

b) Vì AB = AC 

=> ∆ABC cân tại A 

Mà AM là trung tuyến 

=> AM \(\perp\)BC 

Mà a\(\perp\)AM 

=> a//BC ( từ vuông góc tới song song )

c) Vì CN//AM (gt)

AN//MC ( a//BC , M thuộc BC)

=> ANCM là hình bình hành 

=> NC = AM , AN = MC

Mà AMC = 90° 

=> ANCM là hình chữ nhật 

=> NAM = AMC = MCN =  CNA = 90° 

Xét ∆ vuông NAC và ∆ vuông MCA có : 

AN = MC

AM = CN

=> ∆NAC = ∆MCA (ch-cgv)

d) Vì ANCM là hình chữ nhật (cmt)

=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)