K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 7 2021

a.

Trong tam giác vuông ABH ta có:

\(cotB=\dfrac{BH}{AH}\Rightarrow BH=AH.cotB\)

Trong tam giác vuông ACH ta có:

\(cotC=\dfrac{CH}{AH}\Rightarrow CH=AH.cotC\)

\(\Rightarrow BH+CH=AH.cotB+AH.cotC\)

\(\Leftrightarrow BC=AH\left(cotB+cotC\right)\)

\(\Leftrightarrow AH=\dfrac{BC}{cotB+cotC}\) (đpcm)

b. Áp dụng công thức câu a:

\(AH=\dfrac{4}{cot45^0+cot30^0}=-2+2\sqrt{3}\) (cm)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.\left(-2+2\sqrt{3}\right).4=-4+4\sqrt{3}\approx2,93\left(cm^2\right)\)

NV
22 tháng 7 2021

undefined

22 tháng 7 2017

giúp mình làm câu C với

a: \(\dfrac{BC}{cotB+cotC}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)=BC:\dfrac{BC}{AH}=AH\)

b: \(AH=\dfrac{16}{cot60+cot45}=24-8\sqrt{3}\)

\(S=\dfrac{16\left(24-8\sqrt{3}\right)}{2}=8\left(24-8\sqrt{3}\right)\)

23 tháng 10 2023

Xét ΔABC vuông tại A có

\(cotB=\dfrac{BA}{AC};cotC=\dfrac{AC}{AB}\)

\(cotB+cotC=\dfrac{BA}{AC}+\dfrac{AC}{AB}\)

\(=\dfrac{AB^2+AC^2}{AB\cdot AC}=\dfrac{BC^2}{AB\cdot AC}\)

\(=\dfrac{BC}{AB\cdot AC}\cdot BC=\dfrac{BC}{AH}\)