K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2023
Để chứng minh MN = AD.sin(BAC), ta sẽ sử dụng định lí sin.

Trong tam giác AMN, ta có:

MN = AN.sin(∠MAN) (định lí sin)

Vì MN là hình chiếu vuông góc của D lên AB và AC, nên AN = AD.cos(∠BAC) và AM = AD.cos(∠CAB). Thay vào công thức trên, ta có:

MN = AD.cos(∠CAB).sin(∠BAC)

Do đó, để chứng minh MN = AD.sin(BAC), ta cần chứng minh rằng:

cos(∠CAB).sin(∠BAC) = sin(∠BAC)

Áp dụng định lí sin, ta có:

cos(∠CAB).sin(∠BAC) = sin(∠BAC).cos(∠CAB)

Vì cos(∠CAB) = cos(90° - ∠BAC) = sin(∠BAC), nên:

sin(∠BAC).cos(∠CAB) = sin(∠BAC).sin(∠BAC) = sin^2(∠BAC)

Vậy, MN = AD.sin(BAC).

Như vậy, đã chứng minh hai điều kiện trên.

AH
Akai Haruma
Giáo viên
27 tháng 9 2023

Lời giải:

a. Xét tứ giác $ADHE$ có $\widehat{A}=\widehat{D}=\widehat{E}=90^0$ nên là hcn

$\Rightarrow AH=DE$

$\Rightarrow DE.BC=AH.BC=2S_{ABC}=AB.AC$ (đpcm) 

b.

Xét tam giác vuông $ADH$ vuông tại $D$ thì:

$\frac{AD}{AH}=\cos \widehat{DAH}=\cos (90^0-\widehat{HAC})=\cos C$

$\Rightarrow AD=AH\cos C$

AH
Akai Haruma
Giáo viên
27 tháng 9 2023

Hình vẽ:

8 tháng 8 2023

a) Ta có: \(BC=13cm\Rightarrow BC^2=13^2cm=169cm\)

Xét: \(AB^2+AC^2=5^2+12^2=25+144=169=13^2=BC^2\)

Vậy tam giác ABC vuông tại A có cạnh huyền BC

b) Áp dụng định lý thích hai cạnh góc vuông tà tích giữa cạnh huyền và đường cao ta có:

\(AH\cdot BC=AB\cdot AC\)

\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot5}{13}\approx4,6\left(cm\right)\)

c) Xét ΔAHB vuông tại H có đường cao HE ta có:  

\(\Rightarrow AH^2=AE\cdot AB\) (1)

Xét ΔAHC vuông tại H có đường cao HF ta có:

\(\Rightarrow AH^2=AF\cdot AC\) (2) 

Từ (1) và (2) 

\(\Rightarrow AB\cdot AE=AC\cdot AF\)

\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\) (3) 

Dựa vào (3) 

Ta suy ra: \(\Delta AEF\sim\Delta ABC\)

\(\Rightarrow\widehat{AEF}=\widehat{ABC}\) (đpcm)

a: Xét ΔÂBC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

b: AH=AB*AC/BC=60/13(cm)

c: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB

=>góc AFE=góc ABC

1: ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN và ΔACB có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

\(\widehat{MAN}\) chung

Do đó: ΔAMN đồng dạng vớiΔACB

 

7 tháng 11 2023

Câu 2 nữa bạn

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại Na) chứng minh tứ giác BMHD, BMEC nội tiếpb) chứng minh MC là tia phân giác của góc EMDc) chứng minh H và N đối xứng với nhau qua BCd) chứng minh OC vuông góc BE2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f...
Đọc tiếp

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU

1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N

a) chứng minh tứ giác BMHD, BMEC nội tiếp

b) chứng minh MC là tia phân giác của góc EMD

c) chứng minh H và N đối xứng với nhau qua BC

d) chứng minh OC vuông góc BE

2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e

a) chứng minh tứ giác bdmc, adhm nội tiếp

b) chứng minh ef//md

c) vẽ đường kính bk của (o). chứng minh ah=ck

d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)

3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e

a) chứng minh tứ giác mnhc, bdnc nội tiếp

b) chứng minh h và e đối xứng với nhau qua bc

c) chứng minh oa vuông góc dn

d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng

 

0
11 tháng 10 2023

loading...

Do M, N lần lượt là hình chiếu của H lên AB, AC

⇒ HM ⊥ AB và HN ⊥ AC

∆AHB vuông tại H có HM là đường cao

⇒ AH² = AM.AB (1)

∆AHC vuông tại C có HN là đường cao

⇒ AH² = AN.AC (2)

Từ (1) và (2) ⇒ AM.AB = AN.AC

Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN và ΔACB có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

\(\widehat{MAN}\) chung

Do đó: ΔAMN\(\sim\)ΔACB