K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

ABCMDEIK

Ta có: \(\widehat{DAB}=\widehat{MAB}\) , \(\widehat{EAC}=\widehat{MAC}\) (do tính chất đối xứng)

=> \(\widehat{DAE}=2.\widehat{BAC}\) là đại lượng không đổi khi M di chuyển trên BC.

=> \(DE^2=AD^2+AE^2-2.AD.AE.\cos\widehat{DAE}\)

Mà AD = AE = AM

=> \(DE^2=AM^2+AM^2-2.AM.AM.\cos\left(2.\widehat{BAC}\right)\)

               \(=2.AM^2\left[1-\cos2\widehat{BAC}\right]\)

=> DE nhỏ nhất khi AM nhỏ nhất => M là chân đường cao hạ từ A xuống BC

14 tháng 12 2017

Bạn xem ở đây nhé

Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath

Tham khảo:

undefined

Tham khảo:

undefined

3 tháng 8 2021

a/ Nối AM

- Do D đối xứng với M qua AB => AB là đường trung trực của MD
=> AD=AM (t/c đường trung trực)

- Do E đối xứng với M qua AC => AC là đường trung trực của ME
=> AE=AM (t/c đường trung trực)

Từ đó suy ra: AD=AE hay A là trung điểm của DE hay D đối xứng với E qua A (đpcm)

b/ Ta có: AM=AE (cmt)

- Tứ giác MAEC có: AE=AM => Tứ giác MAEC là hình thoi => CE // AM 

Tương tự ta cũng có: AM=AD (cmt)

- Tứ giác ADBM có: AM=AD => Tứ giác ADBM là hình thoi => BD // AM

Từ đó suy ra được: BD // CE (đpcm)

c/ Điểm M phải là trung điểm của BC thì DE mới có độ dài nhỏ nhất

14 tháng 12 2017

Lời giải bạn Thanh đúng rồi, mình vẽ hình và trình bày lại cho rõ hơn như sau:

A B C M D E I K

a) Do D và M đối xứng qua AB nên AD = AM

         E và M đối xứng qua AC nên AE = AM

=> AD = AE (vì cùng bằng AM)

b) Theo câu a) thì AD = AE nên tam giác ADE cân => \(\widehat{ADE}=\widehat{AED}\) (1)

tam giác AID = tam giác AIM t(trường hợp CGC) vì có AI chung, AD = AM, \(\widehat{DAI}=\widehat{IAM}\)

=> \(\widehat{ADI}=\widehat{AMI}\)    (2)

Tương tự: \(\widehat{AEK}=\widehat{AMK}\)    (3)

Từ (1), (2) và (3) suy ra \(\widehat{AMI}=\widehat{AMK}\) +> AM là phân giác góc \(\widehat{IMK}\)

c) Ta có: \(\widehat{DAB}=\widehat{MAB}\) , \(\widehat{EAC}=\widehat{MAC}\) (do tính chất đối xứng)

=> \(\widehat{DAE}=2.\widehat{BAC}\) là đại lượng không đổi khi M di chuyển trên BC.

=> \(DE^2=AD^2+AE^2-2.AD.AE.\cos\widehat{DAE}\)

Mà AD = AE = AM

=> \(DE^2=AM^2+AM^2-2.AM.AM.\cos\left(2.\widehat{BAC}\right)\)

               \(=2.AM^2\left[1-\cos2\widehat{BAC}\right]\)

=> DE nhỏ nhất khi AM nhỏ nhất => M là chân đường cao hạ từ A xuống BC

14 tháng 10 2016

BAI NAY DE QUA  NHO K DUNG NHA !

cau a

vi D,M  doi xung nen tam giac ADM co AD=AM

cmtt voi tam giac AME nen co AM=AE

tu do co AD=AE

cau b

cm tam AIK=tam giac AIM do chung AD;AD=AM;DAI=MAI

nen goc AID= goc AMI

CMTT VOI tam giacAKM va AKE CO AMK=AEK

co AD = AE NEN TAM GIAC ADE CAN NE ADI=AEK

TU LAM NOT CAU C GOI Y AM LA DUONG CAO THI DE NHO NHAT

17 tháng 10 2019

A A A B B B C C C M M M D D D E E E

Do E đối xứng với M qua AC nên AC là đường trung trực EM.

Do đó AE = AM (1). Tương tự AD = AM (2)

Cộng theo vế (1) và (2) suy ra AE + AD = 2AM. (3)

*Chứng minh A, E, D thẳng hàng

Theo (1) thì AE = AM -> tam giác AEM cân tại A.

Do đó \(\widehat{EAM}=180^o-2\widehat{EMA}\)(4)

Tương tự \(\widehat{MAD}=180^o-2\widehat{AMD}\)(5)

Cộng theo vế (4) và (5) suy ra ^EAD = 180o do đó D, E, A thẳng hàng => AE + AD = ED

Kết hợp (3) ED = 2AM . Hạ \(AH\perp BC\) thì \(AM\ge AH\)

Đẳng thức xảy ra khi M trùng H.

Do đó \(ED\ge2AM\ge2AH=const\)

Đẳng thức xảy ra khi M trùng H hay M là chân đường cao hạ từ A đến BC.

P/s: Mới học dạng này nên ko chắc..

17 tháng 10 2019

À trong hình quên hạ AH vuông góc BC :P

14 tháng 12 2017

Bạn xem lời giải ở đườn link sau nhé

Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath

14 tháng 12 2017

Bạn tham khảo ở đây:

Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath

14 tháng 12 2017

Bạn xem lời giải ở đường link sau nhé

Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath