Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Dễ thấy \(\Delta COF=\Delta COH\left(ch-cgv\right)\Rightarrow CF=CH\Rightarrow\Delta CFH\) cân tại C.
\(\Rightarrow\widehat{CFH}=\widehat{CHF}\left(1\right)\)
Kẻ \(IG//AC\left(G\in FH\right)\)
\(\Rightarrow\widehat{IGF}=\widehat{CHF}\left(2\right)\)
Từ (1);(2) \(\Rightarrow\Delta IGF\) cân tại I.\(\Rightarrow IG=FI\) mà \(FI=AH\Rightarrow GI=AH\)
Xét \(\Delta AHK\) và \(\Delta IGK\) có:
\(\widehat{HAI}=\widehat{AIG}\)
\(AH=IG\)
\(\widehat{AHG}=\widehat{HGI}\)
\(\Rightarrow\Delta AHK=\Delta IGK\left(g.c.g\right)\Rightarrow AK=KI\)
b.
Hạ \(OE\perp AB\left(E\in AB\right)\)
Do O là tâm đường tròn nội tiếp tam giác ABC nên khoảng cách từ O đến mỗi cạnh là bằng nhau.
\(\Rightarrow OE=OH=OF\)
Khi đó:
\(\Delta AOE=\Delta AOH\left(ch.cgv\right)\Rightarrow EA=HA\)
\(\Delta BOE=\Delta BOF\left(ch.cgv\right)\Rightarrow BE=BF\)
Ta có:
\(BA=BE+EA=BF+AH=BF+FI=BI\)
\(\Rightarrow\Delta ABI\) cân tại B.
Do \(KA=KI\Rightarrow BK\) trung tuyến mà BO là phân giác nên B,O,K thẳng hàng.
1.Ta có: BAE = BAC+CAE = BAC+90o
DAC = BAC+DAB = BAC+90o
=> BAE=DAC
Xét tam giác BAE và tam giác DAC ta có:
AB=AD (gt)
BAE=DAC (cmt)
AE=AC (gt)
=>tam giác BAE = tam giác DAC (c.g.c)
=> ABE=ADC (2 góc tương ứng)
Gọi giao điểm của BE và DC là H, giao điểm của AB và DC là I
Có:+) ADI+AID+DAI = 180o => DAI = 180o-ADI-AID
+) HBI+HIB+BHI = 180o => BHI = 180o-HBI-HIB
Mà ADI=HBI (vì ADC=ABE) ;
AID=HIB (2 góc đối đỉnh)
=> BHI=DAI=90o
=> BE vuông góc với DC tại H
Mà BK vuông góc với DC tại K
=> K và H trùng nhau hay 3 điểm E;K;B thẳng hàng.(dpcm)
cau 1 :
A B C E
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0
a: Xét ΔAEB và ΔAED có
AB=AD
góc BAE=góc DAE
AE chung
=>ΔAEB=ΔAED
=>góc BEA=góc DEA
=>EA là phân giác của góc BED
b: AK=AB+BK
AC=AD+DC
mà BK=DC; AB=AD
nên AK=AC
=>ΔAKC cân tại A
mà AH là phân giác
nên AH vuônggóc CK
c: Xét ΔEBK và ΔEDC có
EB=ED
góc EBK=góc EDC
BK=DC
=>ΔEBK=ΔEDC
=>góc KEB=góc CED
=>góc CED+góc CEK=180 độ
=>D,E,K thẳng hàng