Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N E F
Bài làm
a) Vì E,F lần lượt đối xứng với H qua AB,AC. Nên AB lần lượt là trung điểm của của EH và HF
=> AE = AH , AH = AF
=> AE = AF
c) Vì AE = AF => Tam giác ABC cân tại A => \(\widehat{AEF}=\widehat{AFE}\) ( 1 )
Xét tam giác AME và tam giác AMH có:
AM chung
AE = AH ( cmt )
ME = MH ( AB là đường trung trực của EH )
=> tam giác AME = tam giác AMH ( c.c.c )
=> \(\widehat{AEM}=\widehat{AHM}\) ( 2 )
Xét tam giác ANH và tam giác ANF có:
AN chung
AH = AF ( cmt )
NH = NF ( AC là trung trực của HF )
=> tam giác ANH = tam giác ANF ( c.c.c )
=> \(\widehat{AHN}=\widehat{AFN}\) ( 3 )
Từ ( 1 ) ; ( 2 ) và ( 3 ) => \(\widehat{MHA}=\widehat{NHA}\)
=> HA là phân giác của \(\widehat{MHN}\)
c) Vì NH = NF nên tam giác NHF cân tại N
=> NC là phân giác của \(\widehat{HNF}\)
Xét tam giác EMH có:
EM = MH
=> Tam giác EMH cân tại M
=> MB là phân giác của \(\widehat{EMH}\)
Xét tam giác MNH có:
HA là phân giác của \(\widehat{MHN}\)
Mà BH | AH
=> BH là tia phân giác ngoài của tam giác MNH tại H
NC là tia phân giác ngoài của tam giác MNH tại H
Xét tam giác MNH có MC và HC là hai tia phân giác ngoài của tam giác MNH
=> MC là tia phân giác của góc trong tam giác MNH
=> \(\widehat{BMC}=\frac{\widehat{EMH}+\widehat{HMN}}{2}=90^0\)
Ta có \(\widehat{BMH}+\widehat{HMC}=90^0;\widehat{BMH}+\widehat{MHE}=90^0\)
=> \(\widehat{HMC}=\widehat{EMH}\)
=> CM // EH
Chứng minh tương tự BN // HF
Do đó: AH, BN, CM đồng quy tại một điểm.
# Học tốt #
Cho tam giác ABC có góc A=90 độ , AB=8cm , AC=6cm
a, tính BC
b, trên cạnh AC lấy điểm E sao cho AE=2cm; trên tia đối tia AB lấy điểm D sao cho AD=AB. Chứng minh tam giác BEC = tam giác DEC
c, chứng minh DE đi qua trung điểm cạnh BC
a) Theo định lý Py-ta-go:
BH2 = AB2 - AH2
CH2 = AC2 - AH2
Mà AB2 > AC2 => BH2 > CH2
b)góc HAB+góc B=90 độ
CAH+C=90 độ
Mà Cgóc >góc B
=> góc CAH<góc HAB
c) Vì AB là trung trực của HM (gt)
=> AH = AM (t/c đường trung trực)
Lại có: AC là trung trực của NH
=> AN = AH (t/c đường trung trực)
=> AM = AN (=AH)
=> ΔAMN cân tại A