K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2021

 

A B C M N E F

Bài làm

a) Vì E,F lần lượt  đối xứng với H qua AB,AC. Nên AB lần lượt là trung điểm của của EH và HF

=> AE = AH , AH = AF

=> AE = AF

c) Vì AE = AF => Tam giác ABC cân tại A => \(\widehat{AEF}=\widehat{AFE}\)   ( 1 ) 

Xét tam giác AME và tam giác AMH có:

AM chung

AE = AH ( cmt )

ME = MH ( AB là đường trung trực của EH )

=> tam giác AME = tam giác AMH ( c.c.c )

=> \(\widehat{AEM}=\widehat{AHM}\)       ( 2 ) 

Xét tam giác ANH và tam giác ANF có:

AN chung 

AH = AF ( cmt )

NH = NF ( AC là trung trực của HF )

=> tam giác ANH = tam giác ANF ( c.c.c )

=> \(\widehat{AHN}=\widehat{AFN}\)           ( 3 ) 

Từ ( 1 ) ; ( 2 ) và ( 3 ) => \(\widehat{MHA}=\widehat{NHA}\)

=> HA là phân giác của \(\widehat{MHN}\)

c) Vì NH = NF nên tam giác NHF cân tại N

=> NC là phân giác của \(\widehat{HNF}\)

Xét tam giác EMH có: 

EM = MH

=> Tam giác EMH cân tại M 

=> MB là phân giác của \(\widehat{EMH}\)

Xét tam giác MNH có:

HA là phân giác của \(\widehat{MHN}\)

Mà BH  |  AH

=> BH là tia phân giác ngoài của tam giác MNH tại H

     NC là tia phân giác ngoài của tam giác MNH tại H

Xét tam giác MNH có MC và HC là hai tia phân giác ngoài của tam giác MNH

=> MC là tia phân giác của góc trong tam giác MNH

=> \(\widehat{BMC}=\frac{\widehat{EMH}+\widehat{HMN}}{2}=90^0\)

Ta có \(\widehat{BMH}+\widehat{HMC}=90^0;\widehat{BMH}+\widehat{MHE}=90^0\)

=> \(\widehat{HMC}=\widehat{EMH}\)

=> CM // EH

Chứng minh tương tự BN // HF

Do đó: AH, BN, CM đồng quy tại một điểm. 

# Học tốt #

11 tháng 8 2019

Cảm ơn nhé

23 tháng 7 2016

Cho tam giác ABC có góc A=90 độ , AB=8cm , AC=6cm    

a, tính BC

b, trên cạnh AC lấy điểm E sao cho AE=2cm; trên tia đối tia AB lấy điểm D sao cho AD=AB. Chứng minh tam giác BEC = tam giác DEC

c, chứng minh DE đi qua trung điểm cạnh BC

9 tháng 5 2022

ai biết

10 tháng 5 2017

k giùm

21 tháng 7 2018

a) Theo định lý Py-ta-go:

BH2 = AB2 - AH2

CH2 = AC2 - AH2

Mà AB2 > AC2 => BH2 > CH2

b)góc HAB+góc B=90 độ 

CAH+C=90 độ

Mà Cgóc >góc B

=> góc CAH<góc HAB

c) Vì AB là trung trực của HM (gt)

=> AH = AM (t/c đường trung trực)

Lại có: AC là trung trực của NH

=> AN = AH (t/c đường trung trực)

=> AM = AN (=AH)

=> ΔAMN cân tại A