K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2021

a, Ta có:

ADAB=412=13;AEAC=515=13⇒ADAB=AEAC⇒ADAB=412=13;AEAC=515=13⇒ADAB=AEAC⇒Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.⇒⇒ DE//AE

Xét tam giác ADE và ABC có:

ADAB=AEACADAB=AEAC

ˆDAE=ˆBACDAE^=BAC^

⇒⇒ Tam giác ADF đồng dạng với tam giác ABC

 

Đọc tiếp

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>ΔADE\(\sim\)ΔABC

b: Xét tứ giác BDEF có 

BD//EF

DE//BF

Do đó: BDEF là hình bình hành

2 tháng 4 2022

Em cảm ơn ạ

a) Ta có: \(\dfrac{AD}{AB}=\dfrac{4}{12}=\dfrac{1}{3}\)

\(\dfrac{AE}{AC}=\dfrac{5}{15}=\dfrac{1}{3}\)

Do đó: \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)\(\left(=\dfrac{1}{3}\right)\)

Xét ΔABC có 

\(D\in AB\)(gt)

\(E\in AC\left(gt\right)\)

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)

Do đó: DE//BC(Định lí Ta lét đảo)

\(\Leftrightarrow\text{Δ}ADE\sim\text{Δ}ABC\)(Định lí tam giác đồng dạng)

b) Xét tứ giác BDEF có 

DE//BF(cmt)

BD//EF(gt)

Do đó: BDEF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

a: XétΔABC có 

AD/AB=AE/AC

Do đó: DE//BC

hay ΔADE\(\sim\)ΔABC

b: Xét tứ giác BDEF có 

EF//BD

DE//BF

Do đó: BDEF là hình bình hành

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại FChứng minh tam giác ADE đồng dạng với tam giác BFE2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AKChứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB2 = BK.BC3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm...
Đọc tiếp

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi

1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại F

Chứng minh tam giác ADE đồng dạng với tam giác BFE

2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AK

Chứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB= BK.BC

3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm E sao cho AE 18cm trên cạnh AC lấy F sao cho AF = 6 cm

So sánh AE/AC;AF/AB

4) Cho tam giác ABC vuông tại A đường cao AH cắt phân giác BD tại I

Chứng minh rằng a,IA.BH = IH.BA

                                b,Tam giác ABC đồng dạng với tam giác HBA

5) cho tam giác AOB có AB bằng 18 cm OA = 12 cm OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD bằng 3 cm. Qua D kẻ đường thẳng song song với AB cắt AO ở C. Gọi F là giao điểm của AD và BC

Tính độ dài OC;CD

6) Cho tam giác nhọn ABC có AB bằng 12 cm AC bằng 15 cm. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = 4 cm,AE = 5cm

Chứng minh rằng DE // BC, Từ đó suy ra tam giác ADE đồng dạng với tam giác ABC?

7) Cho tam giác ABC vuông tại A D nằm giữa A và C. Kẻ đường thẳng D vuông góc với BC tại E và cắt AB tại F 

Chứng minh tam giác ADF đồng dạng với tam giác EDC

 

1
13 tháng 2 2018

tính đến hết tết à