Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn không được nói vậy , nói thế là khinh người khác và đây là nơi chúng ta giao lưu giúp nhau mà , nên bạn không được nói bậy như thế.
a, xét tam giác ABD và tam giác ACE có góc A chung
AB = AC (gt)
góc ADB = góc AEC = 90
=> tam giác ABD = tam giác ACE (ch-gn)
b, tam giác abd = tam giác ACE (câu a)
=> góc ABD = góc ACE (Đn)
AB = AC (gt) => tam giác ABC cân tại A (Đn) => góc ABC = góc ACB
có ABD + góc DBC = góc ABC
góc ACE + góc ECB = góc ACB
=> góc DBC = góc ECB
=> Tam giác IBC cân tại I
=> IB = IC
xét tam giác EIB và tam giác DIC có : góc EIB = góc DIC (đối đỉnh)
góc BEC = góc CDB = 90
=> tam giác EIB = tam giác DIC (ch-gn)
=> EI = ID (đn)
a, Xét 2 tam giác vuông ΔABD và ΔACE có:
AB = AC (gt);
góc A chung
⇒ ΔABD = ΔACE (cạnh huyền - góc nhọn) (đpcm)
b, ΔABD = ΔACE ⇒ AD = AE
⇒ AC - AD = AB - AE ⇒ BE = CD
Xét 2 tam giác vuông ΔBIE và ΔCID có:
BE = CD
\(\widehat{BEI}=\widehat{CDI}\) ( đối đỉnh )
⇒ ΔBEI = ΔCDI (cạnh góc vuông - góc nhọn)
Ta có \(\widehat{ACH}+\widehat{ECK}=90^o\)\(\left(\widehat{ACE}=90^o\right)\)
Mà \(\widehat{ECK}+\widehat{CEK}=90^o\)
\(\Rightarrow\widehat{ACH}=\widehat{CEK}\)
Xét \(\Delta AHC\)và \(\Delta CKE\)ta có :
\(\widehat{H}=\widehat{K}\left(=90^o\right)\)
\(AC=CE\left(gt\right)\)
\(\widehat{ACH}=\widehat{CEK}\left(cmt\right)\)
\(\Rightarrow\Delta AHC=\Delta CKE\left(ch-gn\right)\)
\(\Rightarrow AH=CK\)( hai cạnh tương ứng ) \(\left(1\right)\)
Chứng minh tương tự, ta cũng có :
\(\Delta DIB=\Delta BHA\left(ch-gn\right)\)\(\Rightarrow IB=AH\)( hai cạnh tương ứng ) \(\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow BI=CK\left(đpcm\right)\)
Chúc em gái chị học tốt nhé ^^
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: ΔABD=ΔACE
=>AD=AE
Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD
Do đó: ΔAEI=ΔADI
=>EI=DI
c: ΔABD=ΔACE
=>BD=CE
BI+DI=BD
CI+EI=CE
mà EI=DI và BD=CE
nên BI=CI
IB=IC
AB=AC
Do đó: AI là đường trung trực của BC
=>AI\(\perp\)BC
a, Vì △ABC cân tại A => AB = AC
Xét △ABD vuông tại D và △ACE vuông tại E
Có: BAC là góc chung
AB = AC (cmt)
=> △ABD = △ACE (ch-gn)
c, Ta có: AE + BE = AB và AD + DC = AC
Mà AB = AC (cmt) ; AD = AE (△ABD = △ACE)
=> BE = DC
Xét △HEB vuông tại E và △HDC vuông tại D
Có: BE = DC (cmt)
EBH = DCH (△ABD = △ACE)
=> △HEB = △HDC (cgv-gnk)
=> BH = HC (2 cạnh tương ứng)
=> △BHC cân tại H
c, Vì AE = AD (cmt) => △AED cân tại A => AED = (180o - EAD) : 2
Vì △ABC cân tại A (gt) => ABC = (180o - BAC) : 2
=> AED = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> DE // BC (dhnb)
d, Xét △BAH và △CAH
Có: AB = AC (cmt)
ABH = ACH (cmt)
AH là cạnh chung
=> △BAH = △CAH (c.g.c)
=> BAH = CAH (2 góc tương ứng)
Xét △ABK và △ACK
Có: AB = AC (cmt)
BAK = CAK (cmt)
AK là cạnh chung
=> △ABK = △ACK (c.g.c)
=> BK = CK (2 cạnh tương ứng)
Xét △BHK và CMK
Có: HK = MK (gt)
HKB = MKC (2 góc đối đỉnh)
BK = CK (cmt)
=> △BHK = △CMK (c.g.c)
=> HBK = MCK (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> BH // MC (dhnb)
=> BD // MC (H BD)
Mà BD ⊥ AC (gt)
=> MC ⊥ AC (từ vuông góc song song)
=> ACM = 90o
=> △ACM vuông tại C
a, Xét tam giác ABD và tam giác ACE ta có :
AB = AC (gt)
^A chung
^D = ^E = 90^0
=)) tam giác ABD = tam giác ACE (g.c.g)
=)) EC = BD ( 2 góc tương ứng )
b, Ta có : EC = BD (cmt)
Mà I là giao điểm của BD ; CE (gt)
=)) EI = DI
a) Xét ΔABD vuông tại D và ΔACE vông tại E có:
AB = AC (ΔABC cân tại A)
^A chung
=> ΔABD = ΔACE (ch.gn)
=> AD = AE (2 cạnh tương ứng)
b) Ta có: AE + EB = AB; AD + DC = AC
Mà: AB = AC(ΔABC cân tại A); AD = AE (cmt)
=> BE = CD
Xét ΔBIE vuông tại E và ΔCID vuông tại D có:
BE = CD (cmt)
^BIE = ^CID (2 góc đối đỉnh)
=> ΔBIE = ΔCID (cgv.gn kề nó)
=> EI = DI (2 cạnh tương ứng)
c) Vì I là giao điểm 2 đường cao BD và CE của ΔABC
=> I là trực tâm của ΔABC
=> AI ⊥ BC