Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
a) Xét tam giác ABE vuông tại E và tam giác ACF vuông tại F có:
BAC+ABE=90 BAC+ACF=90
=> ABE=ACF
=> 180-ABE=180-ACF =>ABG=HCA
Xét tam giác AGB và tam giác HAC có:
AB=HC (gt)
ABG=HCA (CMT)
GB=AC (gt)
=> Tam giác AGB= Tam giác HAC (c.g.c) (ĐPCM)
b)Theo a có:Tam giác AGB= Tam giác HAC
=> GAB=AHC (hai góc tương ứng)
Xét tam giác AFH vuông tại F có :
FAH+AHC=90 (định lí tổng 3 goác 1 tam giác )
=> FAH+GAB=90 (vì GAB=AHC cmt)
=>GAH=90 => AG vuông góc với AH (ĐPCM)
c) 1)Theo a, có: Tam giác AGB= Tam giác HAC
=> AG=HA ( hai cạnh tương ứng)
=> Tam giác AGH cân tại A
Mà M là trung điểm của GH => AM là trung tuyến đồng thời là đường cao
=> AM vuông góc với GH
=> AMN=90 =>Tam giác MIN vuông tại M
=>MIN+IMN+MNI=180 (định lí tổng ba góc 1 tam giác)
=>MNI=180-90-MIN=90-MIN (1)
Gọi giao điểm của AO và BC là K, giao điểm của AM và BC là I
Vì O là giao điểm hai đường vuông góc BE và CF của tam giác ABC nên AO là đường vuông góc thứ ba của tam giác này
=> AKN=90 => Tam giác AKI vuông tại K
=> IAK+AKI+AIK=180
=>IAK=180-90-AIK=90-AIK (2)
Từ (1) và (2) có: MNI=90-MIN, IAK=90-AIK
Mà MIN và AIK đối đỉnh => MNI=IAK =>BNG=OAM (ĐPCM)
2) Ta có AB < AC mà AC = BG
=> AB < BG
=>AGB < GAB mà AGB = HAC (câu a)
=>HAC < GAB (1)
Tam giác AGH cân tại A, đường trung tuyến AM
=> GAM = HAM (2).
Từ (1) và (2) => BAM = GAM - GAB < HAM - HAC = MAC (ĐPCM)
Ta có AB < AC, mà AC = BG nên AB < BG. Do đó ^AGB < ^GAB, mà ^AGB = ^HAC (câu a) nên ^HAC < ^GAB (1).
Tam giác AGH cân tại A, đường trung tuyến AM => ^GAM = ^HAM (2).
Từ (1) và (2) => ^BAM = ^GAM - ^GAB < ^HAM - ^HAC = ^MAC.
c) Từ câu a => tam giác AGH cân tại A, đường trung tuyến AM đồng thời là đường cao nên AM vuông góc GH.
Hai đường cao BE, CF cắt nhau tại O nên O là trực tâm của tam giác ABC. Do đó AO vuông góc BC.
AM cắt BC tại K, ta thấy ^OAM = 90 độ - ^AKB; ^BNG = 90 độ - ^MKN; hai góc AKB và MIN đối đỉnh với nhau nên ^OAM = ^BNG.
Ý sau đợi mình suy nghĩ ^^^
Bạn tự vẽ hình nha
a.
Xét tam giác MBE và tam giác MCA có:
MB = CM (AM là trung tuyến của tam giác ABC => M là trung điểm của BC)
BME = CMA (2 góc đối đỉnh)
AM = EM (gt)
=> Tam giác MBE = Tam giác MCA (c.g.c)
=> BE = CA (2 cạnh tương ứng)
=> MEB = MAC (2 góc tương ứng)
mà 2 góc này ở vị trsi so le trong
=> BE // AC
b.
BE // AC (theo câu a)
=> AFD = BED (2 góc so le trong)
Xét tam giác DFA và tam giác DEB có:
AFD = BED (chứng minh trên)
DF = DE (gt)
FDA = EDB (2 góc đối đỉnh)
=> Tam giác DFA = Tam giác DEB (g.c.g)
=> FA = EB (2 cạnh tương ứng)
mà EB = AC (theo câu a)
=> FA = AC
=> A là trung điểm của FC
c.
Tam giác ABC có:
AB < AC (gt)
mà AC = EB (theo câu a)
=> AB < EB
=> BEM < BAM (quan hệ giữa góc và cạnh đối diện trong tam giác)
mà BEM = CAM (tam giác MBE = tam giác MCA)
=> CAM < BAM
Chúc bạn học tốt
Phương An giúp mình làm bài hình còn lai được không?
đề nè
cho góc nhọn xOy; trên tia Ox lấy A(A#O); trên tia Oy lấy điểm B (B # O)sao cho OA = OB; kẻ ACvuông góc với OY (CE Oy) ; BD vuông góc Ox ( D E Ox); I là giao diểm của AC và BD
a. chứng minh tam giác AOC= tam giác BOD
b. So sánh IC và IA
c. Chứng minh tam giác AIB cân
d. Chứng minh góc IAB=M góc 1\2 góc AOB
Câu hỏi này mà là linh tinh hả bạn( è)
a) Xét tam giác ABE vuông tại E và tam giác ACF vuông tại F có:
\(\hept{\begin{cases}BAC+ABE=90\\BAC+ACF=90\end{cases}}\) => ABE=ACF
=> 180-ABE=180-ACF =>ABG=HCA
Xét tam giác AGB và tam giác HAC có:
AB=HC (gt)
ABG=HCA (CMT)
GB=AC (gt)
=> Tam giác AGB= Tam giác HAC (c.g.c) (ĐPCM)
=>AG=HA (hai góc tương ứng ) => Tam giác AGH cân tại A (1)
=> GAB=AHC (hai góc tương ứng)
Xét tam giác AFH vuông tại F có :
FAH+AHC=90 (định lí tổng 3 goác 1 tam giác )
=> FAH+GAB=90 (vì GAB=AHC cmt)
=>GAH=90 (2) Từ (1) và (2) suy ra: AGH vuông cân tại A (ĐPCM)
b) 1)Theo a, có: Tam giác AGB= Tam giác HAC
=> AG=HA ( hai cạnh tương ứng)
=> Tam giác AGH cân tại A
Mà M là trung điểm của GH => AM là trung tuyến đồng thời là đường cao
=> AM vuông góc với GH
=> AMN=90 =>Tam giác MIN vuông tại M
=>MIN+IMN+MNI=180 (định lí tổng ba góc 1 tam giác)
=>MNI=180-90-MIN=90-MIN (1)
Gọi giao điểm của AO và BC là K, giao điểm của AM và BC là I
Vì O là giao điểm hai đường vuông góc BE và CF của tam giác ABC nên AO là đường vuông góc thứ ba của tam giác này
=> AKN=90 => Tam giác AKI vuông tại K
=> IAK+AKI+AIK=180
=>IAK=180-90-AIK=90-AIK (2)
Từ (1) và (2) có: MNI=90-MIN, IAK=90-AIK
Mà MIN và AIK đối đỉnh => MNI=IAK =>BNG=OAM (ĐPCM)
2) Ta có AB < AC mà AC = BG
=> AB < BG
=>AGB < GAB mà AGB = HAC (câu a)
=>HAC < GAB (1)
Tam giác AGH cân tại A, đường trung tuyến AM
=> GAM = HAM (2).
Từ (1) và (2) => BAM = GAM - GAB < HAM - HAC = MAC (ĐPCM)