Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E a b c
a) Kẻ \(CE\perp AB\)
Ta có : \(S_{\Delta ABC}=\frac{1}{2}CE.AB\left(1\right)\)
Xét \(\Delta ACE\)có \(\sin A=\frac{EC}{AC}\)
\(\Rightarrow\frac{1}{2}AB.AC.\sin A=\frac{1}{2}AB.AC.\frac{EC}{AC}=\frac{1}{2}AB.EC\left(2\right)\)
Từ (1) và (2) \(\Rightarrow S_{\Delta ABC}=\frac{1}{2}AB.AC.\sin A\left(đpcm\right)\)
b) Kẻ \(BD\perp AC\)
Xét \(\Delta ADB\)có \(\sin A=\frac{BD}{AB}\)
\(\Rightarrow\frac{a}{\sin A}=BC\div\frac{BD}{AB}=\frac{BC.AB}{BD}\left(3\right)\)
Lại có : \(\sin A=\frac{EC}{AC}\)( câu a )
\(\Rightarrow\frac{a}{\sin A}=BC\div\frac{EC}{AC}=\frac{CA.BC}{EC}\left(4\right)\)
Xét \(\Delta BEC\)có \(\sin B=\frac{EC}{BC}\)
\(\Rightarrow\frac{b}{\sin B}=CA\div\frac{EC}{BC}=\frac{CA.BC}{EC}\left(5\right)\)
Xét \(\Delta BDC\)có \(\sin C=\frac{DB}{BC}\)
\(\Rightarrow\frac{c}{\sin C}=AB\div\frac{DB}{BC}=\frac{AB.BC}{DB}\left(6\right)\)
Từ (3) ; (4) ; (5) và (6) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\left(đpcm\right)\)
c) Xét \(\Delta ABD\)có \(\cos A=\frac{AD}{AB}\)
Áp dụng định lí Py-ta-go cho \(\Delta ABD\)vuông tại D ta được :
\(AB^2=BD^2+AD^2\)
Áp dụng định lí Py-ta-go cho \(\Delta BDC\)vuông tại D ta được :
\(BD^2+DC^2=BC^2\)
Ta có : \(b^2+c^2-2bc.\cos A\)
\(=AB^2+AC^2-2AB.AC.\cos A\)
\(=BD^2+AD^2+AC^2-2AB.AC.\frac{AD}{AB}\)
\(=BD^2+\left(AC^2-2AD.AC+AD^2\right)\)
\(=BD^2+\left(AC-AD\right)^2\)
\(=BD^2+DC^2\)
\(=BC^2=a\left(đpcm\right)\)

Bạn tử kẻ hình nhé .
a)\(\Delta ABD~\Delta ACE\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AD}{AE}\)
\(\Rightarrow\Delta ADE~\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=cos^2\widehat{BAC}\)
\(\Rightarrow S_{ADE}=S_{ABC}.cos^2\widehat{BAC}\)
b)Ta có : \(S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}-S_{ABC}.cos^2\widehat{BAC}=S_{ABC}\left(1-cos^2\widehat{BAC}\right)=S_{ABC}.sin^2\widehat{BAC}\)

đặt AB=c, BC=a, AC=c.
để chứng minh bđt trên ta sẽ áp dụng công thức: \(S_{\Delta ABC}=\frac{1}{2}.a.b.sinC=\frac{1}{2}.b.c.sinA=\frac{1}{2}.a.c.sinB\)
ta có: \(\frac{sinA}{sinB+sinC}+\frac{sinB}{sinA+sinC}+\frac{sinC}{sinA+sinB}\)
\(=\frac{a.b.c.sinA}{a.b.c.sinB+a.b.c.sinC}+\frac{a.b.c.sinB}{a.b.c.sinA+a.b.c.sinC}+\frac{a.b.c.sinC}{a.b.c.sinA+a.b.c.sinB}\)
;\(=\frac{2S_{\Delta ABC}.a}{2S_{\Delta ABC}.b+2S_{\Delta ABC}.c}+\frac{2S_{\Delta ABC}.b}{2.S_{\Delta ABC}.c+2.S_{\Delta ABC}.b}+\frac{2S_{\Delta ABC}.c}{2S_{\Delta ABC}.b+2S_{\Delta ABC}.a}\)
\(=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\).
Ta có: \(\frac{a}{b+c}>\frac{a}{a+b+c};\frac{b}{a+c}>\frac{b}{a+b+c};\frac{c}{a+b}>\frac{c}{a+b+c}\)
nên \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1.\)
Ta sẽ chứng minh bđt phụ: \(\frac{a}{b+c}< \frac{2a}{a+b+c}\left(1\right)\)
Thật vậy: \(\left(1\right)\Leftrightarrow a^2< a\left(b+c\right)\Leftrightarrow a< b+c\)(đúng vì a,b,c là độ dài 3 cạnh của tam giác).
tương tự: \(\frac{b}{a+c}< \frac{2b}{a+b+c};\frac{c}{a+b}< \frac{2c}{a+b+c}\).
suy ra: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a}{b+c}+\frac{2b}{a+c}+\frac{2c}{a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\).
vậy bất đẳng thức đã được chứng minh.

Đã xảy ra lỗi rồi. Bạn thông cảm vì sai sót này.
Ta có:
Áp dụng hệ quả của bất đẳng thức Cauchy cho ba số không âm
trong đó với , ta có:
Tương tự, ta có:
Cộng ba bất đẳng thức và , ta được:
Khi đó, ta chỉ cần chứng minh
Thật vậy, bất đẳng thức cần chứng minh được quy về dạng sau: (bất đẳng thức Cauchy cho ba số )
Hay
Mà đã được chứng minh ở câu nên luôn đúng với mọi
Dấu xảy ra
Vậy,

a, \(\bigtriangleup{ABD} \sim \bigtriangleup{ACE}\) (g.g)
\(\Rightarrow\) \(\dfrac{AB}{AC} = \dfrac{AD}{AE}\) \(\Rightarrow\) \(\dfrac{AB}{AD} = \dfrac{AC}{AE}\)
\(\Rightarrow\) \(S_{ABC} \sim S_{ADE}\) (c.g.c)
\(\Rightarrow\) \(\dfrac{S_{ADE}}{S_{ABC}} = k^2 = ({\dfrac{AD}{AB}})^2\) = \(cos^2A\)
\(\Rightarrow\) \(S_{ADE} = S_{ABC} . cos^2A\) (đpcm)
b, \(S_{BCDE} = S_{ABC} - S_{ADE}\)
\(= S_{ABC} - S_{ABC} . cos^2A \)
= \(S_{ABC} (1-cos^2A)\)
= \(S_{BCDE} = S_{ABC} . sin^2A \) (đpcm)

Từ A vẽ AD _|_ BC ,AG là trung tuyến cắt BC tại E\(\Rightarrow\)\(\hept{\begin{cases}AD\le AE\Rightarrow\frac{1}{AD}\ge\frac{1}{AE}\\1.2GE=BC\left(do\Delta BGCvuongcoElatrungdiem\right)\end{cases}}\)
cotB=\(\frac{BD}{AD}\)cotC=\(\frac{CD}{AD}\)\(\Rightarrow\)2.cotB + cotC=\(\frac{BC}{AD}\)
3.G là trực tâm nên 3GE=AE\(\Rightarrow\)\(\frac{1}{AD}\ge\frac{1}{3GE}\)
từ 1, 2 và 3 \(\Rightarrow\)cotB + cotC=\(\frac{BC}{AD}\ge\frac{2GE}{3GE}=\frac{2}{3}\)
Kẻ AD⊥BC tại D, BE⊥AC tại E
Xét ΔBAE vuông tại E có \(\sin BAE=\frac{BE}{AB}\)
=>\(BE=AB\cdot\sin BAC\)
Xét ΔABC có BE là đường cao
nên \(S_{ABC}=\frac12\cdot BE\cdot AC=\frac12\cdot AB\cdot\sin BAC\cdot AC=\frac12\cdot b\cdot c\cdot\sin A\left(1\right)\)
Xét ΔBEC vuông tại E có \(\sin C=\frac{BE}{BC}\)
=>\(BE=BC\cdot\sin C\)
Xét ΔABC có BE là đường cao
nên \(S_{ABC}=\frac12\cdot BE\cdot AC=\frac12\cdot BC\cdot\sin C\cdot AC=\frac12\cdot CA\cdot CB\cdot\sin C=\frac12\cdot a\cdot b\cdot\sin C\) (2)
Xét ΔADB vuông tại D có \(\sin ABD=\frac{AD}{AB}\)
=>\(AD=AB\cdot\sin ABD=AD\cdot\sin ABC\)
Xét ΔABC có AD là đường cao
nên \(S_{ABC}=\frac12\cdot AD\cdot BC=\frac12\cdot AB\cdot\sin ABC\cdot BC=\frac12\cdot BA\cdot BC\cdot\sin ABC=\frac12\cdot c\cdot a\cdot\sin B\) (3)
Từ (1),(2),(3) suy ra \(S_{ABC}=\frac12\cdot ab\cdot\sin C=\frac12\cdot ac\cdot\sin B=\frac12\cdot bc\cdot\sin A\)