K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

a, Xét \(\Delta ACF\) và \(\Delta ABE\) có:

\(\widehat{AFC}=\widehat{AEB}=90^0\)

\(\widehat{BAC}\) là góc chung

\(\Rightarrow\Delta ACF~\Delta ABE\left(g.g\right)\)

\(\Rightarrow\frac{AC}{AB}=\frac{AF}{AE}\)

\(\Rightarrow AC.AE=AB.AF\)

Xét \(\Delta AEF\) và \(\Delta ABC\) có:

\(\widehat{CAB}\) là góc chung

\(\frac{AE}{AB}=\frac{AF}{AC}\)

\(\Rightarrow\Delta AEF~\Delta ABC\left(c.g.c\right)\)

b, Xét \(\Delta BDH\) và \(\Delta BEC\) có:

\(\widehat{EBC}\) là góc chung

\(\widehat{BEC}=\widehat{BDH}=90^0\)

\(\Rightarrow\Delta BDH~\Delta BEC\left(g.g\right)\)

\(\Rightarrow\frac{BH}{BC}=\frac{BD}{BE}\)

\(\Rightarrow BE.BH=BC.BD\left(1\right)\)

Tương tự như trên ta được: \(\Delta CDH~\Delta CFB\left(g.g\right)\)

\(\Rightarrow\frac{CH}{CB}=\frac{CD}{CF}\)

\(\Rightarrow CF.CH=CD.CB\left(2\right)\)

Từ (1) và (2) \(\Rightarrow BE.BH+CH.CF=BD.BC+BC.CD=BC\left(BD.CD\right)=BC^2\)

 \(\Rightarrow BH.BE+CH.CF=BC^2\)

19 tháng 3 2020

d,EI _|_ AB ; CE _|_ AB  => EI // CE => AI/IF = AE/EC (đl)

EK _|_ AD; CD _|_ AD => EK // CD => AK/KD = AE/EC (đl)

=> AI/IF = AK/KD; xét tam giac AFD

=> IK // FD (1)

ER _|_ BC; AD _|_ BC => ER // AD => CR/RD = CE/EA (đl)

EQ _|_ CF; AF _|_ CF => AH // AF => CH/FH =  CE/AE (đl)

=> CR/RD = CH/FH; xét tam giác CFD

=> HR // FD       (2)

EK _|_ AD; AD _|_ BD => EK // BD => KH/HD = EH/HB (đl)

EH _|_ CF; CF _|_ BF => EH // FB => EH/HB = QH/HF (đl)

=> KH/HD = QH/HF

=> KH // ED (3)

(1)(2)(3) => I;K;H;R thẳng hàng (tiên đề Ơclit)

4 tháng 3 2021

A B C D E F H I K Q R

4 tháng 3 2021

a) Xét \(\Delta EAB\)và \(\Delta FAC\)có :

\(\widehat{BEA}=\widehat{CFA}\left(=90^0\right)\)

\(\widehat{A}\)chung

\(\Rightarrow\Delta EAB\approx\Delta FAC\)(g.g)

\(\Rightarrow\frac{EA}{FA}=\frac{BA}{CA}\)(2 cặp cạnh tương ứng tỉ lệ)\(\Rightarrow\frac{EA}{BA}=\frac{FA}{CA}\)(tính chất của tỉ lệ thức)

Xét \(\Delta AEF\)và \(\Delta ABC\)có:

\(\widehat{A}\)chung.

\(\frac{EA}{BA}=\frac{FA}{CA}\)(chứng minh trên)

\(\Rightarrow\Delta AEF\approx\Delta ABC\left(c.g.c\right)\)(điều phải chứng minh)

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

15 tháng 4 2021

Nhờ anh có thể bày cho em câu d đc không ạ.

6 tháng 4 2022

\(\dfrac{IA}{IF}=\dfrac{EA}{EC}=\dfrac{KA}{KH}\Rightarrow\)IK//DF.

\(\dfrac{RC}{RD}=\dfrac{EC}{EA}=\dfrac{QC}{QF}\Rightarrow\)QR//DF.

\(\dfrac{FB}{FI}=\dfrac{HB}{HE}=\dfrac{DB}{DR}\Rightarrow\)IR//DF

\(\Rightarrow\)4 điểm I,K,Q,R thẳng hàng.

a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co

góc B chung

=>ΔBDA đồng dạng vói ΔBFC

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng vói ΔACB

c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

=>ΔAEH đồng dạng vói ΔADC

=>AD*AH=AE*AC

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

góc ECH chung

=>ΔCEH đồng dạng vói ΔCFA

=>CH*CF=CE*CA

=>AH*AD+CH*CF=CA^2