Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AH cắt đường tròn tâm O tại M . Tam giác abd có dk là đường cao nên bk.ba=bd.bd mà bk.ba = bf.bi nên bd.bd =bf.bi
Nên bf/bd=bd/bi và góc ibd chung
Nên tam giác bfd đồng dạng tam giác bdi
Nên góc bdi = góc bid mà bdi=ecb=bcm
mà góc bia= góc bca
Cộng lại được aid=dcm
Aicm nội tiếp nên aim = dcm . Từ đó suy ra aid=aim
Nên i,d,m thẳng hàng nên ah và id cắt nhau tại điểm thuộc đường trón tâm o
a: Xéttứ giác AEHF có góc AEH+góc AFH=180 độ
nên AEHF là tứ giác nội tiếp
c: Xét tứ giác AEDC có góc ADC=góc AEC=90 độ
nên AEDC là tứ giác nội tiếp
d: góc EDA=góc ABF
góc FDA=góc FDH=góc ACE
mà góc ABF=góc ACE
nên góc EDA=góc FDA
=>DA là phân giác của góc EDF
a) Xét tứ giác BFHD có
\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối
\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{BFC}\) và \(\widehat{BEC}\) cùng nhìn cạnh BC một góc bằng 900
Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
a: góc OBE+góc OCE=180 độ
=>OBEC nội tiếp
b: Xét ΔEBD và ΔEAB có
góc EBD=góc EAB
góc BED chung
=>ΔEBD đồng dạng với ΔEAB
=>EB/EA=ED/EB
=>EB^2=EA*ED
a) Xét tứ giác AEFB có:
∠(AFB) = 90 0 ( AF là đường cao)
∠(AEB) = 90 0 ( BE là đường cao)
⇒ 2 đỉnh E và F cùng nhìn cạnh AB dưới 1 góc bằng nhau
⇒ AEFB là tứ giác nội tiếp.
a) Xét Δ AFH vuông tại F => A, F, H thuộc đường tròn đường kính AH
ΔAGH vuông tại G => A, G, H thuộn đường tròn đường kính AH
=> Tứ giác AFHG nội tiếp đường tròn đường kính AH
CMTT => BGFC nội tiếp đường tròn đường kính BC
b) Do I là tâm đường tròn ngoại tiếp tứ giác AFHG => I là trung điểm AH
M là tâm đường tròn ngoại tiếp tứ giác BGFC => M là trrung điểm BC
Xét ΔAHG vuông tại G, trung tuyến GI => GI = IA = IH => ΔIAG cân tại I => \(\widehat{IAG}=\widehat{IGA}\)
CMTT => \(\widehat{MCG}=\widehat{MGC}\). Mà \(\widehat{MCG}=\widehat{IAG}\) (cùng phụ \(\widehat{GBC}\)) => \(\widehat{MGC}=\widehat{IGA}\)
=> \(\widehat{IGA}+\widehat{IGH}=\widehat{MGC}+\widehat{IGH}=\widehat{IGM}=90^o\) => IG ⊥ MG
=> MG là tiếp tuyến đường tròn tâm I
c) Kẻ đường kính AK của đường tròn (O) => \(\widehat{ACK}=90^o\) (góc nội tiếp chắn nửa đường tròn) => ΔACK vuông tại C => \(\widehat{KAC}=90^o-\widehat{AKC}\)
ΔABE vuông tại E => \(\widehat{EAB}=90^o-\widehat{ABE}\) hay \(\widehat{DAB}=90^o-\widehat{ABC}\)
Xét đường tròn (O) có \(\widehat{ABC}=\widehat{AKC}\) (cùng chắn \(\stackrel\frown{AC}\))
=> \(90^o-\widehat{AKC}=90^o-\widehat{ABC}\) => \(\widehat{DAB}=\widehat{KAC}\) => \(\stackrel\frown{BD}=\stackrel\frown{KC}\) (góc nội tiếp bằng nhau chắn các cung bằng nhau)
=> BD = KC (hai cung bằng nhau căng hai dây bằng nhau)
Xét ΔAKC vuông tại C, theo định lý Pytago có: AC2 + KC2 = AK2
Xét ΔAEC vuông tại E, theo định lý Pytago có: EA2 + EC2 = AC2
ΔBED vuông tại E, theo định lý Pytago có: EB2 + ED2 = BD2
Mà BD = KC (cmt) => BD2 = KC2 => EB2 + ED2 = KC2
=> EA2 + EB2 + EC2 + ED2 = AC2 + KC2 = AK2 = (2R)2 = 4R2