K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 3

Lời giải:

Vì $AD, BE, CF$ là đường cao của tam giác $ABC$ và cắt nhau tại $H$ nên $\widehat{HFA}=\widehat{HEA}=90^0$

Tứ giác $AEHF$ có tổng hai góc đối nhau $\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0$ nên $AEHF$ là tứ giác nội tiếp.

------------------

Kẻ tiếp tuyến $Ax$ của $(O)$. Ta có $OA\perp Ax(1)$

$\widehat{xAB}=\widehat{ACB}=\widehat{ECB}(2)$ (góc tạo bởi tiếp tuyến và dây cung bằng góc nt chắn cung đó - cung $AB$)

Tứ giác $BFEC$ có $\widehat{BFC}=\widehat{BEC}=90^0$ và cùng nhìn cạnh $BC$ nên $BFEC$ là tứ giác nội tiếp.

$\Rightarrow \widehat{ECB}=\widehat{AFE}(3)$

Từ $(2); (3)\Rightarrow \widehat{xAB}=\widehat{AFE}$

Mà 2 góc này ở vị trí so le trong nên $Ax\parallel EF(4)$

Từ $(1); (4)\Rightarrow OA\perp EF$

 

AH
Akai Haruma
Giáo viên
20 tháng 3

Hình vẽ:

a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)

nên AEHF là tứ giác nội tiếp

b: Xét ΔABE vuông tại E và ΔHCE vuông tại E có 

\(\widehat{ABE}=\widehat{HCE}\)

Do đó: ΔABE\(\sim\)ΔHCE

Suy ra: AB/HC=BE/CE

hay \(AB\cdot CE=BE\cdot HC\)

a) Xét tứ giác AEHF có 

\(\widehat{AFH}\) và \(\widehat{AEH}\) là hai góc đối

\(\widehat{AFH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: BFEC nội tiếp

=>góc HFE=góc HBC

=>góc HFE=góc HNM

=>FE//MN

a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)

nên AEHF là tứ giác nội tiếp

b: Xét ΔFAC vuông tại F và ΔFHB vuông tại F có

\(\widehat{FCA}=\widehat{FBH}\left(=90^0-\widehat{BAE}\right)\)

Do đó: ΔFAC đồng dạng với ΔFHB

=>\(\dfrac{FA}{FH}=\dfrac{FC}{FB}\)

=>\(FA\cdot FB=FC\cdot FH\)

c: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>\(\widehat{FEC}+\widehat{FBC}=180^0\)

mà \(\widehat{FEC}+\widehat{AEF}=180^0\)(hai góc kề bù)

nên \(\widehat{AEF}=\widehat{ABC}\)(1)

Kẻ tiếp tuyến Ax của (O)

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{xAC}=\widehat{ABC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{xAC}=\widehat{AEF}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//FE

Ta có: Ax//FE

OA\(\perp\)Ax

Do đó: OA\(\perp\)EF

a: góc AFH+góc AEH=180 độ

=>AEHF nội tiếp

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: BFEC nội tiếp

=>góc IBF=góc IEC

Xét ΔIBF và ΔIEC có

góc IBF=góc IEC

góc I chung

=>ΔIBF đồng dạng với ΔIEC

=>IB/IE=IF/IC

=>IB*IC=IE*IF

Câu 8:

a) Xét tứ giác BFEC có 

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

1 tháng 4 2021

Nhờ các bạn giúp giải tiếp câu b và c. Thanks

 

6 tháng 3 2021

answer-reply-image answer-reply-image Bạn tham khảo nhé!

6 tháng 3 2021

bài này khá ophuwsc tạp, sao 4 p mà bạn vẽ hình và trl đc, hỏi chấm. tự hỏi tự trl à, hỏi chấm

11 tháng 3 2022

chỉ cần câu c thôi

c: Vì góc B là góc nội tiếp chắn cung nhỏ AC

nên \(sđ\stackrel\frown{AC}=2\cdot\widehat{B}=120^0\)

góc AEH+góc AFH=180 độ

=>AEHF nội tiếp