K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2019

a,  O B M ^ = O E M ^ = 90 0

=> Tứ giác OEBM nội tiếp

b, Chứng minh được: ∆ABM:∆BDM (g.g) =>  M B 2 = M A . M B

c, DOBC cân tại O có OM vừa là trung trực vừa là phân giác

=>  M O C ^ = 1 2 B O C ^ = 1 2 s đ B C ⏜

Mà  B F C ^ = 1 2 B C ⏜ =>  M O C ^ = B F C ^

d,  O E M ^ = O C M ^ = 90 0 => Tứ giác EOCM nội tiếp

=>  M E C ^ = M O C ^ = B F C ^  mà 2 góc ở vị trí đồng vị => FB//AM

10 tháng 3 2022

Tắt quá

 

12 tháng 3 2017

a,Xét đường tròn (O) có:

MB là tiếp tuyến của đường tròn (gt) => \(\widehat{OBM}=90^0\)

Mặt khác E là trung điểm của AD (gt) => \(OE\perp AD\) => \(\widehat{OEM}=90^0\) => \(\widehat{OBM}=\widehat{OEM}\)

Xét tứ giác OEBM có: \(\widehat{OBM}=\widehat{OEM}\) (cmt)

=> OEBM là tứ giác nội tiếp

b, Xét đường tròn (O), tiếp tuyến MB, dây cung BD có:

\(\widehat{MBD}\) là góc tạo bởi tiếp tuyến và dây cung và \(\widehat{MAB}\) là góc nội tiếp cùng chắn cung BD => \(\widehat{MBD}=\widehat{MAB}\)

Xét \(\Delta MBD\)\(\Delta MAB\) có:

\(\widehat{MBD}=\widehat{MAB}\) (cmt)

\(\widehat{M}\) là góc chung

=> \(\Delta MBD\) ~ \(\Delta MAB\left(g.g\right)\)

=> \(\dfrac{MB}{MA}=\dfrac{MD}{MB}\) => \(MB^2=MA.MD\)

c, Gọi giao điểm của OM với (O) là I

Xét đường tròn (O), tiếp tuyến MA, MB có: MA cắt MB tại M

=> \(\widehat{IOB}=\widehat{IOC}=\dfrac{1}{2}\widehat{BOC}\) (t/c của 2 tiếp tuyến cắt nhau)

=> cung IB = cung IC

Mặt khác \(\widehat{BOC}\) là góc ở tâm và \(\widehat{BAC}\) là góc nội tiếp cùng chắn cung BC => \(\widehat{BAC}=\dfrac{1}{2}\widehat{BOC}\)

=> \(\widehat{BAC}=\widehat{IOC}\). Hay \(\widehat{BAC}=\widehat{MOC}\)

Ta có: \(\widehat{BAC}\)\(\widehat{BFC}\) là các góc nội tiếp cùng chắn cung BC

=> \(\widehat{BAC}=\widehat{BFC}\)

=> \(\widehat{BFC}=\widehat{MOC}\)

d, Gọi giao điểm của OE và DF là K

Ta có: \(\widehat{OEM}=90^0\left(cmt\right)\) => \(KE\perp AD\)

Xét \(\Delta AKD\) có:

E là trung điểm của KD (gt)

\(KE\perp AD\left(gt\right)\)

=> \(\Delta AKD\) cân tại K => \(\widehat{KAD}=\widehat{KDA}\). Hay \(\widehat{BAD}=\widehat{FDA}\)

Xét đường tròn (O) có: \(\widehat{BAD}\)\(\widehat{BFD}\) là các góc nội tiếp cùng chắn cung BD => \(\widehat{BAD}=\widehat{BFD}\)

=> \(\widehat{BFD}=\widehat{FDA}\)

Mà 2 góc này ở vị trí so le trong => BF // AD. Hay BF // AM

13 tháng 3 2017

cảm ơn nhiều ạ

30 tháng 3 2023

loading...  

11 tháng 3 2022

Do BM là tiếp tuyến của đường tròn nên \widehat{OBM}=90^o

Xét đường tròn (O) có AD là một dây cung. Lại có E là trung điểm AD nên theo tính chất của đường kính và dây cung, ta có OE\perp AD hay \widehat{OEM}=90^o.

Xét tứ giác OEBM có \widehat{OBM}=\widehat{OEM}=90^o, chúng lại là hai góc kề nhau nên OEBM là tứ giác nội tiếp.

                   
11 tháng 3 2022

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O (AB < AC). Hai tiếp tuyến tại B và C cắt nhau tại MAM cắt đường tròn (O) tại điểm thứ hai D. Gọi E là trung điểm đoạn AD. Chứng minh OEBM là tứ giác nội tiếp.

theo bai ta co  là trung điểm đoạn AD