Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a, Vì AE là vừa là đg cao (AE⊥HM) vừa là trung tuyến nên tg AHM cân tại A
Do đó AH=AM
Vì AF là vừa là đg cao (AF⊥HN) vừa là trung tuyến nên tg AHN cân tại A
Do đó AH=AN
Từ đó ta được AM=AN hay tg AMN cân tại A
b, Vì E,F là trung điểm HM,HN nên EF là đtb tg MHN
Do đó EF//MN
c, Vì AI là trung tuyến tg AMN cân tại A nên AI cũng là đg cao
Do đó AI⊥MN
Mà EF//MN nên AI⊥EF
d, Vì tg AEH và tg AFH cân tại A nên AE,AF lần lượt là p/g \(\widehat{MAH}\) và \(\widehat{NAH}\)
Do đó \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}=2\cdot\widehat{EAH}+2\cdot\widehat{FAH}=2\cdot\widehat{BAC}\)
a) Xét tam giác AHB và tam giác CAB có:
Góc AHB=góc CAB=90 độ(gt)
Góc B chung
=> tam giác AHB đồng dạng tam giác CAB(g.g)
b) Xét tam giác ABC vuông tại A(gt) có: BC2= AB2 + AC2 = 225+400=625 => BC=25(cm) (pitago)
Ta có: SABC = 1/2.AB.AC = 1/2.15.20 = 150(cm2)
Nên SABC= 1/2.AH.BC=1/2.AH.25=150(cm2) => AH=12(cm)
Xét tam giác ABC vuông tại H(đường cao AH) có: BH2=AB2-AH2(pitago) => BH=9(cm)
Vậy...
c) Ta có AC/BD=20/30=2/3
Và AM/BH=6/9=2/3
=> AC/BD=AM/BH
Mặt khác ta có Góc ABC+ Góc BAH=90 độ(Góc AHB=90 độ)
Mà góc HAC+ góc BAH=90 độ(vì góc BAC=90 độ)
=> Góc ABC= Góc CAM
Xét tam giác DBH và tam giác CAM có:
Góc ABC = Góc CAM(cmt)
AC/BD=AM/BH(cmt)
=> Tam giác DBH đồng dạng tam giác CAM(c.g.c)
=> HD/MC=BD/AC => HD/BD=MC/AC hay HD.AC=BD.MC