Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Nối F với D : E với D ta có:
Xét tam giác FBC ta có
D là trung điểm BC(1)
Góc BFC=90 (2)
Từ (1)(2)=>FD là trung tuyến của tam giác FBC
=>BD=CD=DF(*)
Chứng minh tương tự tam giác EBC
=>DE=DC=DB(**)
Từ (*)(**)=>BD=CD=DF=DE=(1/2BC)
=>B;F;E;C thuộc đừng tròn
=>D là tâm của đường tròn
B) Do B;H;E nằm trên cùng 1 đừng thẳng => H ko thuộc đừng tròn
=>B;H;E;c ko thuộc đừng tròn
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét (O) có
ΔBFC nội tiếp
BC là đường kính
Do đó: ΔBFC vuông tại F
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
Do đó: AH vuông góc với BC tại D
b: Xét ΔAEH vuông tại E và ΔADC vuông tại D có
góc EAH chung
Do đó: ΔAEH đồnbg dạng với ΔADC
Suy ra: AE/AD=AH/AC
hay \(AE\cdot AC=AH\cdot AD\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét (O) có
ΔBFC nội tiếp
BC là đường kính
Do đó: ΔBFC vuông tại F
=>CF vuông góc AB
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE vuông góc AC
Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
Do đó: H là trực tâm
=>AH vuông góc BC tại D
b: Xét tứ giác AFHE có
góc AFH+góc AEH=90+90=180 độ
=>AFHE nội tiếp đường tròn đường kính AH
I là trung điẻm của AH
c:
Xét tứ giác BFHD có
góc BFH+góc BDH=180 độ
=>BFHD nội tiếp
=>góc DFH=góc DBH=góc EBC
góc IFD=góc IFH+góc DFH
=góc IHF+góc EBC
=góc DHC+góc EBC
=90 độ-góc FCB+góc EBC
=90 độ
=>IF là tiếp tuyến của (O)
Xét ΔIFD và ΔIED có
IF=IE
FD=ED
ID chung
=>ΔIFD=ΔIED
=>góc IED=góc IFD=90 độ
=>IE là tiếp tuyến của (O)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Do BE và CF là các đường cao trong tam giác ABC nên ˆBEC=90∘, ˆBFC=90∘
Tứ giác BCEF có góc E và góc F cùng nhìn cạnh BC và bằng nhau (cùng bằng 90∘) nên là tứ giác nội tiếp.
b) Tứ giác BCEF là tứ giác nội tiếp nên ˆAFE=ˆACB, mà ˆACB=ˆASB (cùng chắn cung AB) nên ˆAFE=ˆASB
Suy ra tứ giác BFMS là tứ giác nội tiếp.
Do đó ˆFMS=180∘−ˆFBS=90∘.. Vậy OA ⊥⊥ EF.
c)
+) Tứ giác BCEF nội tiếp nên ˆAEF=ˆABC (1)
Từ OA ⊥ PE suy ra ˆAIB=ˆAPE(cùng phụ với ˆMAP). (2)
Từ (1) và (2) suy ra ΔAPE∽ΔABI (g.g).
+) Tứ giác BHCS có BH // CS (cùng vuông góc với AS) và BS // CH (cùng vuông góc với AB) nên là hình bình hành. Do đó ba điểm H, K, S thẳng hàng.
Ta sẽ chứng minh hai góc đồng vị ˆPIM và HSM^ bằng nhau.
Tứ giác PDIM nội tiếp (vì có hai góc vuông M và D đối nhau) nên ˆPIM=ˆPDM (3)
Ta có:
ΔAHE∽ΔACDΔ nên AH.AD = AE.AC.
ΔAME∽ΔACSnên AM.AS = AE.AC.
Suy ra AH.AD = AM.AS ⇒AH/AM=AS/AD.
Do đó ΔMAH∽ΔDAS(c.g.c). Suy ra AHM^=ASD^.
Từ đó ta có tứ giác DHMS là tứ giác nội tiếp. Suy ra ˆHDM=ˆHSM. (4)
Từ (3) và (4) suy ra HS // PI, hay KH // PI.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét (O,R)(O,R) đường kính BCBC có
ˆBFC=ˆBEC=90oBFC^=BEC^=90o (góc nội tiếp chắn nửa đường tròn)
⇒ˆAFH=ˆAEH=90o⇒AFH^=AEH^=90o
Tứ giác AFHEAFHE có ˆAFH+ˆAEH=180oAFH^+AEH^=180o
⇒AEFH⇒AEFH thuộc đường tròn đường kính (AH)(AH)
Tâm II là trung điểm của AHAH.
b) Xét ΔAHEΔAHE và ΔBHDΔBHD có:
ˆAEH=ˆBDH=90oAEH^=BDH^=90o
ˆAHE=ˆBHDAHE^=BHD^ (đối đỉnh)
⇒ΔAHE∼ΔBHD⇒ΔAHE∼ΔBHD (g-g)
⇒HEHD=HAHB⇒HEHD=HAHB (hai cạnh tương ứng tỉ lệ)
Mà HA=2HIHA=2HI
⇒HE.HB=2HD.HI⇒HE.HB=2HD.HI
c) Tứ giác AEHFAEHF nội tiếp đường tròn đường kính (AH)(AH) chứng minh câu a
⇒IE=IH=R⇒ΔIEH⇒IE=IH=R⇒ΔIEH cân đỉnh II
⇒ˆIEH=ˆIHE⇒IEH^=IHE^
ˆIHE=ˆBHDIHE^=BHD^ (đối đỉnh)
Từ hai điều trên ⇒ˆIEH=ˆBHD⇒IEH^=BHD^
ˆHEO=ˆHBDHEO^=HBD^ (do ΔOEBΔOEB cân đỉnh O)
⇒ˆIEO=ˆIEH+ˆHEO=ˆBHD+ˆHBD=90o⇒IEO^=IEH^+HEO^=BHD^+HBD^=90o (do ΔDHB⊥DΔDHB⊥D)
⇒IE⊥EO⇒IE⇒IE⊥EO⇒IE là tiếp tuyến của (O)(O).
Chứng minh tương tự
ˆIFH=ˆIHF=ˆDHCIFH^=IHF^=DHC^
ˆHFO=ˆOCHHFO^=OCH^
⇒ˆIFO=ˆDHC+ˆOCH=90o⇒IFO^=DHC^+OCH^=90o
⇒IF⊥FO⇒IF⇒IF⊥FO⇒IF là tiếp tuyến của (O)(O)
![](https://rs.olm.vn/images/avt/0.png?1311)
a:
góc BDC=góc BEC=1/2*sđ cung BC=90 độ
=>CD vuông góc AB và BE vuông góc AC
Xét ΔABC có
CD,BE là đường cao
CD cắt BE tại H
=>H là trực tâm
=>AH vuông góc BC
b: góc AEH+góc ADH=180 độ
=>AEHD nội tiếp đường tròn đường kính AH
=>I là trung điểm của AH
c: góc BDC=góc BEC=90 độ
=>BDEC nội tiếp đường tròn đường kính BC
=>O là trung điểm của BC
d: ID=IE
OD=OE
=>OI là trung trực của DE
=>OI vuông góc DE
![](https://rs.olm.vn/images/avt/0.png?1311)
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
A B C E F H G D O
a/
E và F cùng nhìn BC dưới 2 góc = nhau và \(=90^o\)
=> B, C, E, F cùng thuộc đường tròn đường kính BC với tâm O là trung điểm BC
b/
BE và CF cắt nhau tại H \(\Rightarrow AD\perp BC\) (Trong tg 3 đường cao đồng quy
=> D và F cùng nhìn BH dưới 2 góc = nhau và \(=90^o\)
=> BDHF là tứ giác nt
\(\Rightarrow\widehat{HFD}=\widehat{HBD}\) (góc nt cùng chắn cung HD