Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D
a) Vì \(\Delta\)ABC cân tại A
nên \(\widehat{ABC}\) = \(\widehat{ACB}\)
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (1)
Do AD = AE nên \(\Delta\)ADE cân tại A
=> \(\widehat{AED}\) = \(\widehat{ADE}\)
\(\widehat{AED}\) + \(\widehat{ADE}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{AED}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{AED}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{ABC}\) = \(\widehat{AED}\)
mà 2 góc này ở vị trí đồng vị nên DE // BC.
b) Ta có: AE + EB = AB
AD + DC = AC
mà AE = AD; AB = AC (\(\Delta\)ABC cân tại A)
=> EB = DC
Lại có: \(\widehat{ABC}\) = \(\widehat{ACB}\)
Ta có hình vẽ:
A B C H B D
Xét Δ CDA và Δ ABC có:
CD = AB (gt)
AC là cạnh chung
DA = BC (gt)
Do đó, Δ CDA = Δ ABC (c.c.c)
=> góc DAC = góc BCA (2 góc tương ứng)
Mà DAC và BCA là 2 góc ở vị trí so le trong nên AD // BC (đpcm)
Lại có: \(AH\perp BC\) nên \(AH\perp AD\) (đpcm)
a) bằng nhau trường hợp cạnh huyền (AB=AC) _ góc nhọn (BAC^)
b) ABD^ + HBC^ = ABC^
và ACE^ + HCB^ = ACB^
Mà ABD^ = ACE^ (từ 2 tam giác bằng nhau của câu a suy ra)
và ABC^ = ACB^ (gt)
=> HBC^ = HCB^ hay tam giác BHC cân tại H
c) từ kq câu a => AE = AD hay tam giác EAD cân tại A
=> AED^ = (180o - A^)/2 (1)
tam giác ABC cân tại A => ABC^ = (180o - A^)/2 (2)
Từ (1) và (2) => AED^ = ABC^
Mà 2 góc này ở vị trí đồng vị => ED // BC
cho hỏi vậy câu a,b bạn biết làm rồi hả để mình đỡ phải làm hai câu đó
a) Xét Δ ABM và Δ ACM,có
AB=AC (gt)
AM chung
BM=CM (gt)
=>ΔΔ ABM=ΔΔ ACM(c-c-c)
b)Ta có BM+CM=BC
Mà BC=10cm; BM=CM
=>BM+BM=BC
=>2BM=BC
=>BM=BC/2=10/2=5cm
Ta có Δ ABM=Δ ACM(cmt)
=>Góc BMA=góc CMA(2 góc t/ứng)
Mà \(\widehat{BMA}+\widehat{CMA}=180\left(kb\right)\)
=> \(\widehat{BMA}=\widehat{CMA}=90\)
AM2=AB2-BM2
AM2=132-52
AM2=144
=>\(AM=\sqrt{144}=12\)
a) Xét 2 \(\Delta ABM\) và \(\Delta ACM\), có:
AB = AC ( = 13 cm)
AM cạnh chung
BM = CM ( vì AM là đường trung tuyến )
=> tamgiac ABM = tamgiac ACM ( c.c.c )
b) Ta có: tamgiac ABM = tamgiac ACM
=> góc AMB = góc AMC ( 2 góc tương ứng)
Mà góc AMB + góc AMC = 1800 (kề bù)
=> góc AMB = 1800 : 2 = 900
Nên AM vuông góc BC hay tamgiac ABM vuông tại M
Lại có: BM = CM (vì AM là trung tuyến)
Mà BM + CM = BC
Hay: 2.BM = 10
=> BM = 10 : 2 = 5 (cm)
Áp dụng định lý Pi-ta-go vào tamgiac vuông ABM có:
AB2 = AM2 + BM2
=> AM2 = AB2 - BM2
Hay AM2 = 132 - 52
=> AM2 = 169 - 25 = 144
Vậy AM = \(\sqrt{144}=12\left(cm\right)\)
A B C M ( hình ảnh chỉ mang t/c minh họa )
x y A B C E D
Vì Bx // CE nên \(\widehat{CEB}+\widehat{EBx}=180^o\) (trong cùng phía)
\(\Rightarrow\widehat{EBx}=180^o-90^o=90^o\)
\(\Rightarrow AB\perp Bx\)
Tương tự với AC \(\perp Cy.\)
A B C E D x y
tam giác ABC có :
\(BD\perp AC;Cy//BD\Rightarrow AC\perp Cy\)
\(CE\perp AB;Bx//CE\Rightarrow AB\perp Bx\)