K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABI vuông tại I và ΔACK vuông tại K có 

\(\widehat{BAI}\) chung

Do đó: ΔABI\(\sim\)ΔACK(g-g)

17 tháng 5 2021

A B C 6 8 H

a, Xét tam giác ABC và tam giác HBA ta có : 

^ABC = ^HBA 

^BAC = ^BHA = 900

Vậy tam giác ABC ~ tam giác HBA ( g.g )

b, Xét tam giác HAB và tam giác HCA ta có : 

^AHB = ^CHA = 900

^BAH = ^HCA ( phụ nhau )

Vậy tam giác HAB ~ tam giác HCA ( g.g )

\(\Rightarrow\frac{AH}{CH}=\frac{BH}{AH}\Rightarrow AH^2=BH.CH\)

17 tháng 5 2021

c, Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64\Rightarrow BC=10\)cm 

Vì tam giác ABC ~ tam giác HBA ( cma )

\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)( tỉ lệ thức )

\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=\frac{48}{10}=\frac{24}{5}\)cm 

a) Xét ΔKHB vuông tại K và ΔIHC vuông tại I có 

\(\widehat{KHB}=\widehat{IHC}\)(hai góc đối đỉnh)

Do đó: ΔKHB\(\sim\)ΔIHC(g-g)

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔBCA vuông tại A có AH vuông góc BC

nên AH^2=HB*CH

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

15 tháng 4 2017

Câu a là tam giác ABC đông dạng tam giác HBA