Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
b: Xét tứ giác MNHQ có
K là trung điểm của MH
K là trung điểm của NQ
Do đó: MNHQ là hình bình hành
Suy ra: MQ=HN
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔAPH có
AM vừa là đường cao, vừa là trung tuyến
=>ΔAPH cân tại A
=>AP=AH
=>AM là phân giác của góc PAH
Xét ΔAEP và ΔAEH có
AP=AH
góc EAP=góc EAH
AE chung
=>ΔAEP=ΔAEH
b: Xét ΔAHQ có
AN vừa là đường cao, vừa là trung tuyến
=>ΔAHQ cân tại A
=>AH=AQ=AP
![](https://rs.olm.vn/images/avt/0.png?1311)
a, xét tam giác QIN và tam giác NKQ có L QN chung
góc MQN = góc MNQ do tam giác MNQ cân tại M (gT)
góc QIN = góc NKQ = 90
=> tam giác QIN = tam giác NKQ (ch-gn)
b, tam giác QIN = tam giác NKQ (Câu a)
=> QI = NK (đn)
QI + MI = MQ
NK + MK = MN
MN = MQ do tam giác MNQ cân tại M (gt)
=> MI = MK
=> tam giác MIK cân tại M (đn)
c, xét tam giác MIH và tam giác MKH có : MH chung
IM = MK (Câu b)
góc MIH = gics MKH = 90
=> tam giác MIH = tam giác MKH (ch-cgv)
d, tam giác MIK cân tại M (Câu b)=> góc MIK = (180 - góc IMK) : 2(tc)
tam giác MNQ cân tại M (gt) => gics MQN = (190 - góc IMK) : 2(tc)
=> góc MIK = góc MQN mà 2 góc này đồng vị
=> IK // QN (tc)
M N Q K I H
a. Vì \(\Delta MNQ\) cân tại M => \(MN=MQ,\widehat{MQN}=\widehat{MNQ}\)
Xét 2 tam giác vuông là \(\Delta NIQ\) và \(\Delta QKN\) ta có:
Cạnh chung NQ, \(\widehat{KNQ}=\widehat{IQN}\) ( vì \(\widehat{MNQ}=\widehat{MQN}\) )
\(\Rightarrow\Delta NIQ=\Delta QKN\)( cạnh huyền - góc nhọn )
b. Vì \(\Delta NIQ=\Delta QKN\Rightarrow IQ=KN\) ( 2 cạnh tương ứng )
Mà \(MN=MQ\Rightarrow MN-NK=MQ-IQ\Rightarrow MK=MI\)
\(\Rightarrow\Delta MKI\) cân tại M. ( ĐPCM )
c. Xét 2 tam giác vuông là \(\Delta MKH\) và \(\Delta MIH\) ta có:
\(MK=MI\left(cmt\right)\) và cạnh chung MH
\(\Rightarrow\Delta MKH=\Delta MIH\) ( cạnh huyền - cạnh góc vuông )
![](https://rs.olm.vn/images/avt/0.png?1311)
a,Xét tam giác MHN và tam giác QHN có:
MN=NQ(vì tam giác MNQ cân tại N)
Góc MHN = góc QHN (=90°)
HN:chung
=>tam giác vuông MHN=tam giác vuông QHN(cạnh huyền-cạnh góc vuông)
=>HM=HQ(hai cạnh tương ứng)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét \(\Delta\)MNQ vuông tại Q theo định lí Pitago :
\(MQ^2=MN^2-NQ^2\)
=> \(MQ^2=10^2-6^2\)
=> \(MQ^2=64\)
=> \(MQ=\sqrt{64}=8\left(cm\right)\)
Vậy MQ = 8cm