K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2021

tự vẽ hình nhé 

a, Xét \(\Delta\) MNP và \(\Delta\) HNM

< MNP chung 

<NMP=<NHM(=90\(^0\) )

b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\) 

=> \(MN^2=NP\cdot NH\)

c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có

\(MN^2+MP^2=NP^2\)

=> \(NP^2=144\Rightarrow NP=12cm\)

Ta có \(MN^2=NH\cdot NP\)

Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)

 

 

18 tháng 4 2021

Cách tính MK mình chưa nghĩ ra mong bạn thông cảm 

10 tháng 1 2022

a, xét tam giá HNM và tam giác MNP có chung :

góc MNP

cạnh MN 

cạnh NI của tam giác HNM nằm trên cạnh NP của tam giác MNP 

=> tam giác HNM đồng dạng MNP (c-g-c)

b,

áp dụng đ/l pytago vào tam giác vuông MNP :

=>NP=15cm 

MH.NP =NM.MP

MH.15=9.12

=>MH=7,2cm

áp dụng đl pytago vào tam giác vuông MNH ( NHM = 90\(^o\)):

=>NH=5,4cm

HP=NP-NH

HP=15-5,4=9,6cm

c, 

vì MI là phân giác của góc M 

=> MI là trung tuyến của tam giác MNP nên:

NI=IP 

mà NI+IP=15cm

=> NI=IP =7,5cm

a: IN/IP=MN/MP=3/5

c: NP=căn 10^2-6^2=8cm

NI là phân giác

=>NI/MN=IP/MP

=>NI/3=NP/5=8/8=1

=>NI=3cm

S MNI=1/2*3*6=9cm2

a) Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(NP^2=MN^2+MP^2\)

\(\Leftrightarrow NP^2=36^2+48^2=3600\)

hay NP=60(cm)

Xét ΔMNP có MK là đường phân giác ứng với cạnh NP(gt)

nên \(\dfrac{NK}{MN}=\dfrac{KP}{MP}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{NK}{36}=\dfrac{KP}{48}\)

mà NK+KP=NP=60cm(K nằm giữa N và P)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{NK}{36}=\dfrac{KP}{48}=\dfrac{NK+KP}{36+48}=\dfrac{60}{84}=\dfrac{5}{7}\)

Do đó:

\(\dfrac{NK}{36}=\dfrac{5}{7}\)

hay \(NK=\dfrac{180}{7}cm\)

Vậy: \(NK=\dfrac{180}{7}cm\)