Cho tam giác MNP vuông tại M,kẻ đg caoMH của tam giác MNP
a) Tính diện tích...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2022

M N P H G F E

a) Trong trường hợp \(MN=6cm,MP=8cm\) thì \(S_{MNP}=\frac{1}{2}MN.MP=24\left(cm^2\right)\)

b) Xét \(\Delta NHM\) và \(\Delta MHP\)\(\widehat{NHM}=\widehat{MHP}=90^0,\widehat{HMN}=\widehat{HPM}=90^0-\widehat{HMP}\)

Suy ra \(\Delta NHM~\Delta MHP\). Vậy \(\frac{HN}{HM}=\frac{HM}{HP}\Leftrightarrow HM^2=HN.HP.\)

c) Vì \(\widehat{HNF}=\widehat{HME}=90^0-\widehat{HMN}\)

        \(\widehat{HFN}=180^0-\widehat{MFH}=180^0-\left(360^0-2.90^0-\widehat{HEM}\right)=\widehat{HEM}\)

Nên \(\Delta HFN~\Delta HEM\), suy ra \(\frac{HN}{HF}=\frac{HM}{HE}\). Do đó \(\Delta EHF~\Delta MHN.\)

d) Gọi \(G\) là hình chiếu vuông góc của \(H\) trên \(MP.\)

Từ kết quả của ý c, ta có \(\frac{S_{EHF}}{S_{MHN}}=\frac{HE^2}{HM^2}\ge\frac{HG^2}{HM^2}\Leftrightarrow S_{EHF}\ge\frac{HG^2}{HM^2}S_{MHN}\) (không đổi)

Dấu "=" xảy ra khi \(E\equiv G.\)

a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có

góc N chung

=>ΔHNM đồng dạng với ΔMNP

b: ΔMNP vuông tại M co MH vuông góc NP

nên MH^2=HN*HP