K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2015

b/ Xét tứ giác MPND có:

góc NMP =90 độ (do tam giác MNP vuông tại M)(1)

Tam giác NDQ nội tiếp đường tròn đường kính NQ có cạnh NQ là đường kính

=> tam giác NDQ vuông tại D

=> góc QDN =90 độ(2)

Từ (1) và (2)=> góc QDN = gócNMP

=> tứ giác MPND nội tiếp (đpcm)

c/Từ giác MPND nội tiếp (c/m câu b)

=> góc DMN=góc DPN (cùng chắn cungDN) (đpcm)

d/Xét tứ giác MQEP có:

góc QMP=90 độ (do tam giác MNP vuông tại M và M, Q,N thẳng hàng) (3)

Tam giác NQE nội tiếp đường tròn đường kính NQ có cạnh NQ là đường kính

=> tam giác NQE vuông tại E

=> góc NEQ=90 độ

=> góc QEP=90 độ (góc NEQ+góc QEP=90 độ do kề bù) (4)

Từ (3) và (4)=> tứ giác MQEP nội tiếp

=> góc QME=gócQPE

hay góc NME=góc DPN (do D,Q,P thẳng hàng và N,Q,M thẳng hàng) (5)

Mà góc DPN=góc DMN (c/m câu c) (6)

từ (5) và (6)=> góc DMN=góc NME (7)

Mặt khác: tia MN nằm giữa 2 tia MD và ME (8)

Từ (7) và (8)=> MN là đường phân giác của góc DME (đpcm)

 

 

 

2: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHN vuông tại H có HD là đường cao ứng với cạnh huyền MN, ta được:

\(MD\cdot MN=MH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHP vuông tại H có HE là đường cao ứng với cạnh huyền MP, ta được:

\(ME\cdot MP=MH^2\left(2\right)\)

Từ (1) và (2) suy ra \(MD\cdot MN=ME\cdot MP\)

a: góc NAP=góc NBP=90 độ

=>PA vuông góc MN và NB vuông góc MB

Xét ΔMNP có

NB,PA là đường cao

NB cắt PA tại H

=>H là trực tâm

=>MH vuông góc NP tại I

Xét ΔHAN vuông tại A và ΔHBP vuông tại B có

góc AHN=góc BHP

=>ΔHAN đồng dạng với ΔHBP

b: góc HIP+góc HBP=180 độ

=>HIPB nội tiếp

c: góc BAH=góc IMP

góc IAH=góc BNP

mà góc IMP=góc BNP

nên góc BAH=góc IAH

=>AH là phân giác của góc BAI

góc ABH=góc NMI

góc IBH=góc APN

mà góc NMI=góc APN

nên góc ABH=góc IBH

=>BH là phân giác của góc ABI

18 tháng 1

Không có hình vẽ à?