K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét \(\Delta\)ANM và \(\Delta\)ABM có :

  • MN = MB ( gt )
  • Góc AMN = góc AMB ( vì MA là phân giác )
  • MA : cạnh chung

\(\Rightarrow\)\(\Delta\)ANM = \(\Delta\)ABM ( c . g . c )

\(\Rightarrow\)AN = AB ( hai cạnh tương ứng )

b) Gọi giao điểm giữa NB và MA là I

     Xét \(\Delta\)INM và \(\Delta\)IBM có :

  • MN = MB ( gt )
  • Góc IMN = góc IMB ( vì MI là phân giác ) 
  • MI : cạnh chung

\(\Rightarrow\)\(\Delta\)INM = \(\Delta\)IBM ( c . g . c )

\(\Rightarrow\)Góc MIN = góc MIB ( hai góc tương ứng )

Mà góc MIN + góc MIB = 180 ( do kề bù )

nên góc MIN = góc MIB = 180 ÷ 2 = 90 độ hay NB vuông góc với MA .

18 tháng 12 2021

13 tháng 1 2023

Sử dụng tính chất hình bình hành nha bạn

a: Xét ΔMNA và ΔMBA có

MN=MB

góc NMA=gócBMA
MA chung

Do đó: ΔMNA=ΔMBA
=>AN=AB

b: MN=MB

AN=AB

=>MA là trung trực của NB

=>MA vuông góc với NB

c: Xét ΔMCP có MN/MC=MB/MP

nên NB//CP

d: Xét ΔANC và ΔABP có

AN=AB

góc ANC=góc ABP

NC=BP

Do đó: ΔANC=ΔABP

=>góc NAC=góc BAP

=>góc NAC+góc NAB=180 độ

=>B,A,C thẳng hàng

19 tháng 12 2017

a) xét tam giác MND và tam giác END ta có

MN = EN

góc MND = góc END

ND: cạnh chung

suy ra tam giác MND = tam giác END

suy ra DM = DE và óc NMD = góc NEDsuy ra góc NED = 90 độ

b) ta có tam giác MND = tam giác END suy ra MD = ED

xét tam giác DMK và tam giác DEP ta có 

góc KMD = góc PED ( =90độ)

MD = ED

góc MDK = góc EDP( hai góc đối đinh)

suy ra tam giác DMK = tam giác DEP(đpcm)

c)ta có tam giác DMK = tam giác DEP suy ra MK=EP

ta có NM = NEvà MK = EP suy ra MN+MK=NE+EP suy ra NK=NP

xet tam giác KNDvà tam giác PND ta có

NK=NP

KND= PND

ND:cạnh chung

suy ra tam giác KND=tam giác PND suy ra góc NDK = góc NDP

ta có góc NDK+góc NDP=180 độ và góc NDK= góc NDP

suy góc NDK = góc NDP =90độ

suy ra ND vuông góc với KP

19 tháng 12 2017

hello

16 tháng 5 2020

Xét ΔABDΔABD và ΔEBDΔEBD, ta có:

AB=BE ( gt)

ABDˆ=EBDˆABD^=EBD^ ( Vì BD là tia phân giác của góc B)

BD chung

⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (c-g-c)