Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M P N 3 4 A C G
a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ
\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)
THAY\(NP^2=4^2+3^2\)
\(NP^2=16+9\)
\(NP^2=25\)
\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta MNP\)CÓ
\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)
\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)
B) xét \(\Delta\text{ CPM}\)VÀ\(\Delta\text{CPA}\)CÓ
\(PM=PA\left(GT\right)\)
\(\widehat{MPC}=\widehat{APC}=90^o\)
PC LÀ CAH CHUNG
=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)
c)
\(\Delta CPM=\Delta CPA\left(cmt\right)\)
\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)
\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)
\(\widehat{NMC}+\widehat{CMP}=90^o\)
\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)
\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)
\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)
\(\Rightarrow\Delta NMC\text{ cân}\)
\(\Rightarrow CN=CM\left(đpcm\right)\)
a) xét tam giác MND và tam giác END ta có
MN = EN
góc MND = góc END
ND: cạnh chung
suy ra tam giác MND = tam giác END
suy ra DM = DE và óc NMD = góc NEDsuy ra góc NED = 90 độ
b) ta có tam giác MND = tam giác END suy ra MD = ED
xét tam giác DMK và tam giác DEP ta có
góc KMD = góc PED ( =90độ)
MD = ED
góc MDK = góc EDP( hai góc đối đinh)
suy ra tam giác DMK = tam giác DEP(đpcm)
c)ta có tam giác DMK = tam giác DEP suy ra MK=EP
ta có NM = NEvà MK = EP suy ra MN+MK=NE+EP suy ra NK=NP
xet tam giác KNDvà tam giác PND ta có
NK=NP
KND= PND
ND:cạnh chung
suy ra tam giác KND=tam giác PND suy ra góc NDK = góc NDP
ta có góc NDK+góc NDP=180 độ và góc NDK= góc NDP
suy góc NDK = góc NDP =90độ
suy ra ND vuông góc với KP
Chỉ còn vài tiếng nữa là mình nộp bài rồi, mong các bạn dành ra ít thời gian để giúp đỡ mình. Mình sẽ tích đúng cho các bạn, mình cảm ơn trước!!!!
a: Xét ΔNME có
ND là đường cao
ND là đường phân giác
Do đó: ΔNME cân tại N
b: Xét ΔNMD và ΔNED có
NM=NE
\(\widehat{MND}=\widehat{END}\)
ND chung
DO đó: ΔNMD=ΔNED
Suy ra: DM=DE
mà NM=NE
nên ND là đường trung trực của ME
a: Xét ΔNMK co
NE vừa là đường cao, vừa là phân giác
=>ΔNMK cân tại N
=>NM=NK
Xét ΔNMD và ΔNKD có
NM=NK
góc MND=góc KND
ND chung
=>ΔMND=ΔKND
=>góc NKD=90 độ
=>DK vuông góc NP
b: Xét ΔNKM có
MH,NE là đường cao
MH cắt NE tại I
=>I là trực tâm
=>KI vuông góc MN
=>KI//MP