K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
10 tháng 5 2023
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
góc N chung
=>ΔHNM đồng dạng với ΔMNP
b: ΔMNP vuông tại M co MH vuông góc NP
nên MH^2=HN*HP
UT
18 tháng 4 2021
tự vẽ hình nhé
a, Xét \(\Delta\) MNP và \(\Delta\) HNM
< MNP chung
<NMP=<NHM(=90\(^0\) )
b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\)
=> \(MN^2=NP\cdot NH\)
c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có
\(MN^2+MP^2=NP^2\)
=> \(NP^2=144\Rightarrow NP=12cm\)
Ta có \(MN^2=NH\cdot NP\)
Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)
Hình vẽ:
Lời giải:
a) Xét tam giác $MNP$ và $EMP$ có:
$\widehat{P}$ chung
$\widehat{NMP}=\widehat{MEP}(=90^0)$
$\Rightarrow \triangle MNP\sim \triangle EMP$ (g.g)
b)
Xét tam giác $NEM$ và $MEP$ có:
$\widehat{NEM}=\widehat{MEP}(=90^0)$
$\widehat{ENM}=\widehat{EMP}(=90^0-\widehat{NME})$
$\Rightarrow \triangle NEM\sim \triangle MEP$ (g.g)
$\Rightarrow \frac{NE}{ME}=\frac{EM}{EP}$
$\Rightarrow ME^2=NE.PE$ (đpcm)
c)
Ta có:
$EH.NH=(NH-NE).NH=NH^2-NE.NH(1)$
Xét tam giác $MEN$ và $PMN$ có:
$\widehat{MEN}=\widehat{PMN}=90^0$
$\widehat{N}$ chung
$\Rightarrow \triangle MEN\sim \triangle PMN$ (g.g)
$\Rightarrow \frac{MN}{PN}=\frac{EN}{MN}$
$\Rightarrow MN^2=NE.NP$. Mà $MN=HN$ nên $HN^2=NE.NP(2)
Từ $(1);(2)\Rightarrow EH.NH=NE.NP-NE.NH=NE(NP-NH)=NE.HP$ (đpcm)